
Introduction to OpenGL
and 3D Graphics

Categories
• Introduction to graphics
• The History of 3D Graphics
• How 3D Graphics work
• Drawing Points, Lines and Polygons in OpenGL
• Transformations and Perspective

Introduction to Graphics: Your screen

• Your screen is made of individual colored pixels.
(640x480 during this presentation)

• We generally assign each of these pixels a color
with red, green and blue (RGB) intensities.

• Today (most of the time) these are in “millions of
colors” with 24 bits with 8 bits per channel.

• When we draw to the screen, we generally
deposit these color values inside a memory
buffer or “frame buffer” which your graphics
card turns into signals for your display.

Introduction to Graphics: 2D Graphics

• There are two basic methods of storing 2D
graphics: bitmapped and vector.

• Bitmapped graphics take an image of a particular
size and assign a color value to each pixel.

• These cannot be enlarged without loss of
quality, take lots of space.

• ex: GIF
• Vector graphics use equations to represent lines
and curves.

• These can be enlarged as much as desired
• ex: Adobe Illustrator

Introduction to Graphics: Size of Bitmaps

• Suppose we have 640x480 image stored in
“millions of colors”.

• There are 640x480 = 307,200 pixels
• A file would require are 640x480x4 = 1.22
MB (uncompressed)

• If we consider 1280x854 we get 4.37 MB per
image

• With compression these sizes are okay with
single images, but lets imagine we are trying to
do the same in 3D.

Introduction to Graphics: How we do 3D

• As you can tell from the previous slide, we cannot
build an entire 3D world from bitmaps without
using an enormous amount of space.

• For 3D, we use a vector graphics representation.
• We draw everything out of polygons. And wrap
textures around them, color them and manipulate
them. We can use their vertices as the basis of
calculations. (for more take CS184)

History of 3D Graphics-Early Days

• Not too long ago, there were almost no consumer
3D graphics applications.

• No Special 3D Hardware available to lay people
• Some early software only games: Doom, Wolf 3D.
• These early applications were severally
restricted in what they could do by the power of
the CPU.

• 3D graphics take lots of processing power to
do things like vector calculations, shading and
texture mapping.

History of Computer Graphics-Hardware Acceleration

• 3D Graphics uses very specialized and
parallelizable calculations. These lend themselves
to hardware implementations.

• Early hardware acceleration was only available
for thousands of dollars.

• The first consumer solution was 3Dfx’s Voodoo 1.
• The Voodoo 1 was very primitive, used a pass
through cable through video card.

• Soon other manufacturers showed up in the
consumer market (ex: Matrox, ATI, nVidia)

History of Computers: Why OpenGL

• Many hardware manufacturers, each with its own
hardware, drivers.

• Consumer software makers had to write their
code to each individual card-very messy.

• OpenGL evolves from IRIS GL (SGI) which was
originally designed for CAD.

• OpenGL can be software only or hardware
accelerated and with proper drivers can support
almost any 3D card.

• Microsoft did not like this idea, proposed and
vigorously marketed its competing standard,
DirectX.

The Basic Idea (again)

• When we make 3D objects we will make them out
of triangles (or other polygons). By placing the
triangles side by side, we can create complex
shapes.

• We can use textures and shading to make these
objects look more real.

• As an introduction, we will clear the screen and
then draw a 2D box.

• We will use a library called GLUT which is not
actually part of OpenGL but is good for testing
code and learning.

Sample First Program: An Empty Window

#include <GLUT/glut.h>
#include <OpenGL/gl.h>

void renderer(void);
void initialSetup(void);

int main (int argc, const char * argv[])
{
 glutInit(&argc, (char **)argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutCreateWindow("First Program");
 glutDisplayFunc(renderer);
 initialSetup();
 glutMainLoop();
 return 0;
}

void renderer(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();
}

void initialSetup(void)
{
 glClearColor(0.0, 0.0, .5, 1.0);
}

What does this code mean? Part 1

#include <GLUT/glut.h>
#include <OpenGL/gl.h>

Includes the GLUT and OpenGL libraries

void renderer(void);
void initialSetup(void);

Are the Standard Function Prototypes
• “renderer” is the function GLUT calls whenever it
wants to redraw the window.

• “initialSetup” is a function that goes through the
steps to set state machine parameters before we
begin drawing.

What does this code mean? Part 2

void initialSetup(void)
{
 glClearColor(0.0, 0.0, .5, 1.0);
}

• glClearColor sets the color for the window when
it is cleared.

void renderer(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();
}

• “glClear” clears the entire window by purging the
buffer.

• “glFlush” instructs OpenGL to carry out all
unexecuted OpenGL commands (sequentially).

What does this code mean? Part 3

int main (int argc, const char * argv[])
{
 glutInit(&argc, (char **)argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutCreateWindow("First Program");
 glutDisplayFunc(renderer);
 initialSetup();
 glutMainLoop();
 return 0;
}

• “glutCreateWindow” creates a new Window with
the given name.

• “glutDisplayFunc” tells GLUT what function to
call whenever it wants to redraw the window.

• “glutMainLoop” tells GLUT to begin running. It
will automatically call “renderer” when it needs to
redraw the screen.

DEMO

Drawing 2D Shapes

glRectf(GLfloat ulx, GLfloat uly, GLfloat lrx, GLfloat lry)
glColor3f(GLfloat r, GLfloat g, GLfloat b) //Colors in 0 to 1 range

GL Datatypes
C datatypes aren’t always the same size on different platforms. The
OpenGL designers created platform specific datatypes (somewhere it’s
typedef char GLbyte)

• GLbyte: 8 bit Integer (GLubyte is unsigned)
• GLshort: 16 bit Integer (GLushort)
• GLint, GLsizei: 32 bit Integer (GLuint, GLenum, GLbitfield)
• GLfloat, GLclampf: 32 bit Floating Point
• GLdouble, GLclampd: 64 bit Floating Point
• GLus are unsigned versions of integers

GL Function Naming Convention

• The designers of OpenGL choose a function
naming convention to reflect it’s library, function
and arguments

• Convention: <library><command><# args><arg types>

• ex: <gl><Color><3><f>
• Library is “gl” (vs. glut or glu)
• Command is “Color”
• Takes “3” GLfloat (“f”) args

• Often we have other functions with the same
name, different args. (ex: glColor4f)

Modifications to the Code

void changeSize(GLsizei w, GLsizei h); //New Function Prototype

int main (int argc, const char * argv[]) {
 //..
 glutReshapeFunc(changeSize);
 //...}
void renderer(void) //Ch
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,0.0,0.0); //Set the color to red
 glRectf(100.0, 150.0, 150.0, 100.0); //Draw a rectangle from 100,150 to 150, 100
 glFlush();
}
void changeSize(GLsizei w, GLsizei h) //New Function for resizing
{
 if(h==0)
 h = 1;

 glViewport(0,0,w,h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 if(w <= h)
 glOrtho(0, 250, 0, 250.0 * h/w, 1, -1);
 else
 glOrtho(0,250.0 * w/h, 0, 250, 1, -1);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}
//Initial Setup is the same as before

What does this code mean?

void changeSize(GLsizei w, GLsizei h) //New Function for resizing
{
 if(h==0)
 h = 1;

 glViewport(0,0,w,h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 if(w <= h)
 glOrtho(0, 250, 0, 250.0 * h/w, 1, -1);
 else
 glOrtho(0,250.0 * w/h, 0, 250, 1, -1);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

changeSize: Allows us to resize the window.
Without it most OpenGL calls will not work on
MacOS for some reason. We will discuss some of
these calls later.

Result of this code

Theory: 3D Transformations

• When we create points or lines in 3D we will
designate their location based on their Cartesian
coordinates.

• We want to be able to move around in the 3D
scene and create 3D objects relative to our
present location.

• We also want to be able to move, rotate or scale
a subset of all of the objects.

• This is done through linear algebra, multiplying
points, represented by vectors, by
transformation matrices. (No more math here)

Time For 3D: Points

• We make everything of vertices. We create
vertices with glVertex3f(x,y,z). (x,y,z are
GLfloats)

• All calls to glVertex are between calls to
glBegin(what) and glEnd().

• We save the present state of the transformation
matrix by pushing it onto the stack with
glPushMatrix()

• We restore the old transformation matrix with
glPopMatrix()

Code for Drawing a 3D Spiral of Points

void renderer(void){
 GLfloat ang, x, y, z = -50;

 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glRotatef(90,1,0,0);
 glColor3f(1,0,0);
 glBegin(GL_POINTS);
 for(ang = 0; ang < 10 * 3.14; ang += .1) {
 x = 70 *sin(ang);
 y = 70 *cos(ang);
 z += .75;
 glVertex3f(x,y,z);
 }
 glEnd();
 glPopMatrix();
 glFlush();
}

void changeSize(GLsizei w, GLsizei h) {
 GLfloat sideRange = 200;

 glViewport(0,0,w,h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-sideRange, sideRange, -sideRange, sideRange, sideRange, -sideRange);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

What does this code mean? The Cartesian Volume

void changeSize(GLsizei w, GLsizei h) {
 GLfloat sideRange = 200;

 glViewport(0,0,w,h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-sideRange, sideRange, -sideRange, sideRange, sideRange, -sideRange);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

• In changesize we created a “Cartesian Viewing
Volume”, a 200x200x200 cube in which all
subsequent drawing would occur.

• “Think of it as a 3D canvas”
• glOrtho(left, right, bottom, top, near, far)
creates such a volume.

The Cartesian Viewing Volume
+Y

+X

+Z

What does this code mean? Renderer

 GLfloat ang, x, y, z = -50;
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glRotatef(90,1,0,0);
 glColor3f(1,0,0);
 glBegin(GL_POINTS);
 for(ang = 0; ang < 10 * 3.14; ang += .1) {
 x = 70 *sin(ang);
 y = 70 *cos(ang);
 z += .75;
 glVertex3f(x,y,z);
 }
 glEnd();
 glPopMatrix();
 glFlush();

• Pretty much the code from your algebra class for
drawing a 3D spiral of radius 70.

• We do a rotate because otherwise we would just
see the top. We will revisit rotates later.

Drawing Lines

Instead of using glBegin(GL_POINTS) we use
glBegin(GL_LINES)
We can draw lines as follows
glBegin(GL_LINES);
glVertex3f(x1,y1,z1);
glVertex3f(x2, y2, z2);
glEnd();

But that would be very inefficient, we need to make
lots of calls to glBegin and glEnd. So, we adopt a
more convenient convention.

Drawing Lines

glBegin(GL_LINES)
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glVertex3f(x4, y4, z4);
//etc
glEnd();

A Line is drawn from 1 to 2 and a second line drawn
from 3 to four.

Line Strips

Often we don’t want to draw individual lines but
want to draw a line strip where each point connects
to the next. For example:
glBegin(GL_LINE_STRIP);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glVertex3f(x4, y4, z4);
glEnd();

Draws a line from 1 to 2, a line from 2 to 3 and a
line from 3 to 4.

Changing the spiral to lines

• We can change our spiral from points to lines
simply by changing: glBegin(GL_POINTS);

• to glBegin(GL_LINE_STRIP);

Doing Animation

• So far we have only drawn still images. Now we
will discuss animation.

• We need two buffers. One for the present frame
which is being displayed and one for the next
frame (which we are working on).

• change to glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

• Instead of flushing buffers we will swap them.
• use glutSwapBuffers() instead of glFlush()

• We need the ability to order GLUT to update the
display after a period of time.

• Use glutTimerFunc(time_ms,func_ptr, arg);

Simple Explosion Simulator Code Part 1

int main (int argc, const char * argv[]) {
 //..
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 //..
 glutTimerFunc(25, tf, 1);
 glutMainLoop();
 //..
}

void tf(int blah){
 glutPostRedisplay(); //We do not call renderer directly
 glutTimerFunc(25, tf, 1); //Call our self again in 25 ms
}

void renderer(){
 int i;
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glColor3f(1,0,0);
 glBegin(GL_POINTS);
 for(i=0; i < 256; i++){
 glVertex3f(xs[i], ys[i], zs[i]);
 xs[i] += dxs[i];
 ys[i] += dys[i];
 zs[i] += dzs[i];
 }
 glEnd();
 glPopMatrix();
 glutSwapBuffers(); //Swap Buffers, not flush
}

Explosion Demo Part 2

void initialSetup(void)
{
 int i;

 glClearColor(0.0, 0.0, 0.0, 1.0);

 srand(SEED);

 for(i=0; i < 256; i++)
 {
 xs[i] = ys[i] = zs[i] = 0;
 dxs[i] = (rand() % MAX_V) / DIV_V - SUB_V;
 dys[i] = (rand() % MAX_V) / DIV_V - SUB_V;
 dzs[i] = (rand() % MAX_V) / DIV_V - SUB_V;
 }

}

 DEMO

Drawing Triangles & Winding Part 1

• We draw triangles the same we did lines and
points.

• We use glBegin(GL_TRIANGLES)
• Most shapes made out of polygons are closed, so
we don’t want to render triangles both the inside
and outside of triangles in these shapes.

• We use winding to specify the inside and outside
of a triangle. The order in which the verticies are
entered expresses a front side and a back side.

• Clockwise winding: The front is the side in
which the verticies are in clockwise order.

Drawing Triangles & Winding Part 2

• We can use either clockwise or counterclockwise
winding but we want to be consistant.

• specify using: glFrontFace(GL_CW) [or
GL_CCW]

• The process of eliminating the back face is
called backface culling. By default this is off.

• Winding while not completely necessary is a good
thing to keep in mind while writing code.

• It is hard to fix if you realize you need it
after you have drawn a bunch of triangles
without following either convention.

Changes to main, initialSetup

In main: We change glutInitDisplayMode to include GLUT_DEPTH.

In Initial Setup
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glPolygonMode(GL_FRONT, GL_LINE);

• glEnable() and glDisable are used to turn on and off various
openGL features. Here we turn on depth testing and hidden
surface elimation (culling).

• glPolygonMode(GL_FRONT, GL_LINE) tells openGL to draw the
front of the polygons as wire frames only. GL_FILL would tell it to
draw filled polygons. GL_BACK would be used to give different
settings for the backs. (NOTE: glPolygon Mode doesn’t cull, it just
tells openGL how to draw stuff.

Rewriting Renderer

void renderer() {
 int last=0;
 float ang;

 lastseed = SEED; //For random number generator
 lastang += ANG_ROT; //For rotation
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glRotatef(lastang,1,1,0);
 glBegin(GL_TRIANGLES);
 for(ang = 0; ang < 2 * MY_PI; ang += ANG_INCR) {
 glColor3f((rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0);
 glVertex3f(0,0,0); //top
 glVertex3f(70*sin(ang-ANG_INCR), 70*cos(ang-ANG_INCR), 70);//left
 glVertex3f(70*sin(ang), 70*cos(ang), 70); //right
 }

 for(ang = 0; ang < 2*MY_PI; ang+= ANG_INCR) {
 glColor3f(last, !last, 0);
 glVertex3f(0,0,70); //Middle
 glVertex3f(70*sin(ang), 70*cos(ang), 70);//right
 glVertex3f(70*sin(ang-ANG_INCR), 70*cos(ang-ANG_INCR), 70);//left
 last = !last;
 }
 glEnd();
 glPopMatrix();
 glutSwapBuffers();
}

What does this code mean? Renderer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

Clears both the color buffer and the depth buffer

for(ang = 0; ang < 2 * MY_PI; ang += ANG_INCR) {
 glColor3f((rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0);
 glVertex3f(0,0,0); //top
 glVertex3f(70*sin(ang-ANG_INCR), 70*cos(ang-ANG_INCR), 70);//left
 glVertex3f(70*sin(ang), 70*cos(ang), 70); //right
 }

Sets a random color, draws a vertex for the top of a cone and verticies
for the bottom.

What does this code mean? Renderer

for(ang = 0; ang < 2*MY_PI; ang+= ANG_INCR) {
 glColor3f(last, !last, 0);
 glVertex3f(0,0,70); //Middle
 glVertex3f(70*sin(ang), 70*cos(ang), 70);//right
 glVertex3f(70*sin(ang-ANG_INCR), 70*cos(ang-ANG_INCR), 70);//left
 last = !last;
 }

Sets the color of the bottom to alternate between
green and red.
Draws the middle of the bottom, and the two
triangles on the edges.

Some Nuisances

• We cannot put state command between glBegin()
and glEnd()

• This means we have to call glEnd to change
states

• glPolygonMode() changes the way polygon front
or backs are drawn but not if they are drawn

• We cannot forget to add GLUT_DEPTH in
glutInitDisplayMode()

• We cannot forget to clear the depth buffer using
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

Aside Pseudorandom Numbers in OS X

• In OS X, the built-in C function rand() is broken
• It’s supposed to work like this:

• rand_val = (previous_val * 16807) % (231-1)
• My guess is that Apple Implemented it something
like this

unsigned int glb_seed;
unsigned int rand2()
{
 //Below Causes overflow in the multiply! Implicit mod by 2^32.
 glb_seed = (glb_seed * 16807) % 2147483647;
 return glb_seed;
}

• We can fix the whole problem by using changing
glb_seed’s type to unsigned long long

• So I implemented my own version for the examples

DEMO

• DEMO

Output from Builtin rand and my rand2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand: 3, 0, 1, 2
Four random numbers between 0 & 4 with rand2: 3, 3, 2, 2
Four random numbers between 0 & 4 with rand2: 0, 1, 2, 3
Four random numbers between 0 & 4 with rand2: 3, 0, 0, 0
Four random numbers between 0 & 4 with rand2: 1, 2, 0, 0
Four random numbers between 0 & 4 with rand2: 1, 3, 1, 2
Four random numbers between 0 & 4 with rand2: 2, 2, 0, 2

• We entered lots of verticies multiple times in the
previous file, that’s bad.

• For example this ented the top vertex every time:
for(ang = 0; ang < 2 * MY_PI; ang += ANG_INCR) {

 glColor3f((rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0);
 glVertex3f(0,0,0); //top
 glVertex3f(70*sin(ang-ANG_INCR), 70*cos(ang-ANG_INCR), 70);//left
 glVertex3f(70*sin(ang), 70*cos(ang), 70); //right
}

• We don’t want to do this, it slows down the
program and requires more code. We would like to
make fans instead.

Triangle Fans

V0

V1 V2

V3

V4

New code using Triangle Fans

 glFrontFace(GL_CW);
 glBegin(GL_TRIANGLE_FAN);
 glVertex3f(0,0,0); //top
 for(ang = 0; ang < 2 * MY_PI + ANG_INCR; ang += ANG_INCR) {
 glColor3f((rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0, (rand2() % 1000) / 1000.0);
 glVertex3f(70*sin(ang), 70*cos(ang), 70); //right
 }
 glEnd();

 glFrontFace(GL_CCW);
 glBegin(GL_TRIANGLE_FAN);
 glVertex3f(0,0,70); //Middle
 for(ang = 0; ang < 2*MY_PI+ANG_INCR; ang+= ANG_INCR) {
 glColor3f(last, !last, 0);
 glVertex3f(70*sin(ang), 70*cos(ang), 70);//right
 last = !last;
 }

We now only enter one vertex per iteration of the for
loops instead of the previous three. (Code is in Demo
5)

Triangle Strips

• Often we have code where we want to form a
surface by placing many triangles side by side.

• It would be very redundant to draw all three
verticies every time. We only need one additional
point for each triangle.

• We need to draw in an order which preserves
winding.

• Each vertex Vn connects to
Vn-1 and Vn-2.

V0 V1

V2 V3

V4

Demo

//In Renderer
 for(i=0; i < 49; i++) {
 glBegin(GL_TRIANGLE_STRIP);
 for(j=0; j < 50; j++) {
 glColor3f(i/50.0,j/50.0,heightfield[i][j] /10.0);
 glVertex3f(i,j,heightfield[i][j]);
 glColor3f((i+1)/50.0,j/50.0,heightfield[i][j] /10.0);
 glVertex3f(i+1,j, heightfield[i+1][j]);
 }
 glEnd();
 }

//In Initial Setup
 //Generate Height Field
 for(i=0; i < 50; i++)
 for(j=0; j < 50; j++)
 heightfield[i][j] = rand2() % 100 / 10.0;

Transformation: Moving, Rotating and Scaling

• In several of my most recent demos, I have
demonstrated that stuff is actually 3D by
spinning (rotating) it. In addition to rotating, we
can engage in scaling, and moving (translating).
This section deals with how to do this.

• We often want to move, scale or rotate a specific
object or draw one thing from a specific point.

• We then would like to back up to where were
before. We use a matrix stack to assist us.

• We use glPushMatrix() to save current state
• We use glPopMatrix() to restore the last saved
state (warning: there is a maximum depth)

Definition of Terms
• Eye coordinates are the coordinates where the observer watching the

scene on the screen. These can be thought of as absolute coordinates.
• Viewing Transformation: Determines the point of observation and the

direction in which the observer is looking.
• Think of it as placing and pointing the camera
• Default: (0,0,0) looking down -z axis

• Modeling Transformations: Used to manipulate objects through placing
(translating), rotating and scaling

• Order matters of transformations matters
• Model and viewing matrices are actually the same (ex: move camera

forward vs. moving objects all backward), these are called Modelview
transformations

• Perspective Transformations: “How finished scene is translated into
an image on the screen.”

• Defines clipping planes, viewing volume
• Orthographic or Perspective

Translations

• We have a function that comes with glut called
glutWireCube(size).

• We can think of ourselves as moving around a 3D
canvas, drawing stuff relative to where we are.

• glutWireCube(size) always draws at the origin
• In order to draw the cube where we are, we need
to translate to the place we want to place we
want to draw it and then call glutWireCube()

• glTranslate3f(GLfloat x, GLfloat y, GLfloat z)

Translations Example

void renderer()
{
 int last=0;
 float ang;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glRotatef(45,1,1,0);
 glPushMatrix();

 //Draw a Cube Centered at origin
 glutWireCube(80);

 //Draw a Cube Centered at -80, -90, 0
 glPushMatrix();
 glTranslatef(-80, -90, 0);
 glutWireCube(70);
 glPopMatrix();

 //Draw a Cube Centered at -80, 90, 0
 glPushMatrix();
 glTranslatef(-80, 90, 0);
 glutWireCube(60);
 glPopMatrix();

 glPopMatrix();
 glutSwapBuffers();
}

Rotation

Rotation has several uses
• We can make the entire scene rotate to
demonstrate than an object is actually 3D.

• We could be drawing a smaller piece of scene and
want that to rotate

• For instance, we might want a door to swing
open or a character’s head to turn toward us

• glRotatef(GLfloat angle_degrees, GLfloat x,
GLfloat y, GLfloat z)

• Rotates all objects by angle_degrees about
the given axis

Rotations Example

In the three cubes example, we used glRotatef(45,1,1,0);
 With Rotation Without Rotation

Scales

• We can scale objects uniformly or non-uniformly
(differently in different directions).

• We might want to scale things for a variety of
reasons

• For example: We made our model too big or
too small.

• glScalef(GLfloat x, GLfloat y, GLfloat z)
• Scales by x, y and z in their respective
directions

Scales Example

We slightly modify the Cubes code
 glRotatef(45,1,1,0);
 glPushMatrix();
 glutWireCube(80);

 glPushMatrix();
 glScalef(2, 1, 3); //Double x, triple depth
 glTranslatef(-80, -90, 0);
 glutWireCube(70);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(-80, 90, 0);
 glutWireCube(60);
 glPopMatrix();

How we Made Stuff Spin

In Previous Examples We
• Used a timer function that had a 66.6 FPS frame
rate

• We used a global float called “lastang” to keep
track of the previous angle

• Each time we refreshed the frame, we
incremented “lastang” by a tiny bit, causing a
slightly larger rotation

 lastang += ANG_ROT;
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glRotatef(lastang,1,1,0);

glLoadIdentity()

• glLoadIdentity() simply restores everything to
the “normal” coordinate system. All
transformations: rotations, scales and translates
are undone. This resets the transformation (the
thing that does all the scales, rotates and
translates) to the identity matrix.

• It does not effect the stack in anyway.
Popping a matrix off the stack will overwrite
the identity with whatever was on the stack.

Two Modes, Two Kinds of Transforms

There are actually two different matricies used in OpenGL
• There is a GL_MODELVIEW, the matrix we use and manipulate to

draw pieces of our scene
• This is what we have used so far in these examples
• “Used to place and orient objects” and “move objects around”

• GL_PROJECTION , the
• “Used to define clipping volume”
• All Points are multiplied by this matrix
• Allows for perspective projections, making stuff in the

distance appear smaller
• We can also manipulate this matrix to apply a scene wide

transformation
• Calls to GLOrtho and GLFrustum set up this matrix

• In orthographic projection, all polygons are drawn at the same
size and shape regardless of distance from the eye.

• Used in CAD (ex: drawing the plans for assembling products)
• Can also be used when the relative distances of items are

small compared to total distance to eye
• Perspective makes object that are far away look smaller

(foreshortening).
• Parallel lines converge at a “vanishing point” as their distance

from the viewer increases.
• Used in most realistic looking scenes

Perspective vs. Orthographic Projection

Setting up Perspective
• Hard way: Using glFrustrum
• Easier way: using gluPerspective

• gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble
zNear, GLdouble zFar)

• fovy: Field of view in y (verticle) direction
• aspect: Width/Height
• zNear: Distance to the near clipping plane
• zFar: Distance to the far clipping plane

FOVY

Near

Far

Code for Perspective

Replace the call to glOrtho with
gluPerspective(90, (GLfloat) w/(GLfloat) h, 1, 400);

Example drawing code
 glTranslatef(0, 0, -200);
 glRotatef(90, 1, 0, 0);
 glPushMatrix();

 glColor3f(1,0,0);

 glPushMatrix();
 glTranslatef(40, 40, 50);
 glutWireCube(40);
 glPopMatrix();

 glColor3f(0,1,0);

 glPushMatrix();
 glTranslatef(-40, -40, -50);
 glutWireCube(40);
 glPopMatrix();

 glPopMatrix();

The End

In summary we have done:
• A Little History
• Setup of OpenGL and Some Conventions
• Drawing Points, Lines and Triangles
• Animation
• Culling and Winding
• Triangle Strip and Fans
• Scene Graphs: Translation, Rotation and Scaling
• Orthographic vs. Perspective

When I have some free time, I’ll try to post some
slides on the web about doing shading and textures.

