Steven Stanek

Robert El-Soudani

CS252 Project Proposal - FPGAs and CPUs:

Today’s processors are exhausting the performance increases found in instruction-level parallelism. In the hunt for even more performance, many vendors are turning toward thread-level parallelism, promoting multiple general-purpose cores on a single chip. A common alternative approach to increasing performance is developing special purpose hardware, but this has traditionally been reserved for only a small subset of the most demanding applications because of high cost and limited scope. The maturity of programmable logic found in today’s FPGAs and the push to put multiple cores on a chip suggest the possibility of a third approach that can occupy the middle ground. If code can be organized to execute on a general-purpose core with support by special purpose hardware that is reprogrammable on the fly, perhaps more attractive performance can be attained than the impending multiple general-purpose core solutions. This idea is reminiscent of the use of a general-purpose core along side a vector engine, although in this model, the secondary engine is fully customizable.

Appropriate applications might include machine emulation. Perhaps translating a foreign ISA into native instructions can be achieved fully in the FPGA, allowing most of the code of emulation software to be compiled to a single FPGA structure. FPGAs may be the ultimate tool for exploiting ILP in inner loops. The entire body of an inner loop can be instantiated in hardware in the form of a pipelined logic, allowing entire loop iterations to flow as fast as the FPGA can take them. Independent loop iterations could even be issued in parallel structures in the FPGA. The special purpose cores of media encoders/decoders, graphics processors, etc might also be well realized in an FPGA, and the recent boom in their popularity indicates potential market space for the proposed programmable special purpose hardware solution.

Tasks and Questions:

-FPGA orientation to rest of system

· Data IO. All through CPU? Memory bus access? Dependency implications?

· CPU vs. FPGA role? Coprocessor style programming model?

· How is configuration of FPGA initiated? Where is config data stored and how is it passed around? What is the breadth of configuration?

· Will off the shelf CPU & ISA work? Changes to memory system or other system architecture aspects needed?

-Code generation

· Feasibility of a general-purpose compiler. Expected compiler performance?

· Estimate percentage of code that’s FPGA-izable for different types of today’s programs.

· Take real world code examples and convert it into CPU w/FPGA style code.

· How can code be verified (automatically, by hand, at all)?

· Audit security, exception, and debug facilities realizable

-Performance

· What is the startup time of FPGA-ized code?

· How does memory system performance change?

· Can we simultaneously maintain CPU and FPGA utilization?

· Estimate performance delta in generated example code

· Performance deltas if die space were used for other structures (ie: cache, more functional units)

-Marketability

· Production cost?

· Current offerings in similar performance, cost, and cost/performance brackets. What types of programs do the incumbents generally run? Do we run those well?

· What markets will accept radical new architecture? What markets will accept new compilation model?

-Extensibility

· Can this system be designed to require minimal effort to take advantage of future increases in both CPU and FPGA performance? Memory system performance increases?

· Multiple FPGA cores or CPUs per chip?

