
FPGA IMPLEMENTATION OF A RECONFIGURABLE MICROPROCESSOR

Jacob Davidson

1Jniversity of Quebec in Montreal, P.O.B. 8888, Station A,
Montreal, Quebec, Canada, H3C 3P8

Abstract

This paper describes the implementation of an
8-bits reconfigurable microprocessor (RM) in a
memory based FPGA device (XILINX). The RM
is designed as an 8 bits microprocessor with a
complete instruction set (41), hardware and
software interrupts and 2 Kb addressing range (11
bits address bus). The paper presents the
trade-offs involved in designing the architecture,
the design for performance issues and the
possibilities for future development.

Introduction

Memory based Field Programmable Gate Arrays
(FPGAs) have the advantage of real-time
in-circuit reconfigurability as opposed to other
gate arrays of similar gate density. This
advantage translates into unlimited, in-circuit
flexibility, reconfigurability and reliability,
facilitating prototyping of complex electronic
designs. IJsually, FPGAs are used as LSI
replacement on low volume production or
prototyping devices which are to be eventually
implemented as ASICs. Their 100% testability
and the possibility of achieving a high degree of
fault coverage makes them increasingly attractive
for complex designs with multiple iterations on
their design cycles.

Purpose of the reported work

Certain re q u i re
special-purposes, custom-made microprocessors
which are difficult to manufacture because of the
limited market demand. One of the solutions
available today are the memory based FPGAs
combining reconfigurability and flexibility with
thousands of logic gates. For these reasons, a
memory based FPCiA (XILINX) was considered
for the design of an 8 bits reconfigurable
microprocessor with 2 Kb to 4 Kb addressable
memory and a comprehensive instruction set. The
advantages of an FPGA based reconfigurable
microprocessor (RM) are:

re a1 - ti in e ap p 1 i c a t i on s

3.2.1

IEEE 1993 CUSTOM INTEGRATED CIRCUITS CONFERENCE

- Increased throughput. FPGAs can operate at the
maximum circuit speed and consequently they
can perform several times faster than a
programmed general-purpose microprocessor.
- Low cost implementation. The programming of
the connections between logic gates inside an
FPGA is much cheaper for each new application
than the manufacturing of a Gate Array,
specifically in the case of a limited edition and
frequent reconfiguration of the microprocessor.
- Increased productivity. In order to reconfigure
the microprocessor a new software has to be
downloaded into its internal memory (XILINX
circuits are memory based FPGAs), which is very
similar to downloading a new software program
in memory. Consequently, the cost of designing
new RMs obeys the dynamics of the software
industry rather than the hardware industry.
- Improved testing. All the internal registers,
internal data bus and address bus can be observed
and controlled directly on inputloutput pins
assigned specifically to this task.

Contributions relative to previous work

Several microprocessor designs based on FPGA
are reported in the literature (see references 1. to
5 .) . Previous work was mostly intended for
teaching purposes, resulting in very limited
capacity microprocessors, with only one or two
registers, small address space (256 bytes
addressing space - reference 5 .) and no
subroutine call or interrupt facilities.

The reconfigurable microprocessor has all the
characteristics of a complete 8 bits
microprocessor, with an accumulator A (8 bits),
an index register X (11 bits), a stack register S
(11 bits), a program counter PC (11 bits), an
instructions register IR (16 bits), an 8 bits
arithmetic logic uni t (ALU) and a decoder. It also
has 41 instructions (see Instructions set),
including Jump Subroutine - JSR, Software
Interrupt - SWI, Return from Interrupt - RTI (for
software and hardware interrupts). Moreover, this

0-7803-0826-31'93 $3.00 ' 1993 IEEE

microprocessor can reconfigure itself by starting
the process of loading a new configuration into
his internal memory.

Microprocessor design

The microprocessor architecture was targeted
specifically for implementation in different
FPGAs. This was carried out by using
multiplexers instead of tristate buffers as bus
switching elements.

Fig. 1 shows the block diagram of the
reconfigurable microprocessor architecture. The
chip has 22 one-byte instructions (#1 to #22) and
19 two-bytes instructions (#23 to #41), based on
5 bits opcodes and 11 bits addresses. The 16 bits
instructions register (IR) separates the opcode
from the address, allowing the decoder to
determine the sequence of operations needed to
execute the instructions. The other registers are:
accumulator A (8 bits), program counter PC (11
bits), index register X (1 1 bits) and stack register
S (11 bits).

The instructions are divided in 4 address modes:
inherent (#1 to #17), indexed (#18 to #22),
immediate (#23 to #25) and extended (#26 to
#41). From the point of view of their impact on
the arithmetic logic unit (ALIJ), the instructions
are further divided into 3 groups: pass data - PD
(instructions: pull, Ida -x, Ida x+, Ida #Val, Ida
addr), no-load accumulator - NL (instruction cmp
#val) and pass accumulator - PA (the rest of the
instructions).

The microprocessor uses 3 flags: zero - Z,
negative - N and carry - C, used respectively by
the instructions: BEQ (branch if equal), BMI
(branch if minus) and BCS (branch if carry set).
The carry flag is also used by the instructions:
LSL (logical shift left) and LSR (logical shift
right).

From the total address space of 2 Kb, two
addresses are decoded by the microprocessor
internally, representing a 16 bits output register.
This register is used for addressing the 32 Kb
RAM into which are downloaded the new
microprocessor configurations.

The microprocessor has a 16 Mhz external clock,
from which are generated 3 other clocks used for
instruction decoding and execution. The majority

of instructions execute in a "fetch2" cycle
because they require two memory fetch cycles to
load the 16 bits instruction register - IR. Only the
JSR (jump subroutine) instruction requires a
double fetch2 cycle, needed to save the PC in the
stack and to load the new jump address.

Hardware and software development

The RM was designed with XILINX 4010 device
(10,000 gates, 191 pins), using XILINX software
tools, Mentor Graphics schematics editor NETED
and logic simulator QUICKSIM, on a 400T (12
Mips) Hewlett-Packard workstation. The
microprocessor was extensively simulated with
QUICKSIM before implementation and after
place and route, requiring several modifications
of the initial design.

A cross-assembler was developed (using C
language), to translate assembler programs
written for the microprocessor. Also, a
microprocessor prototype board was designed, on
which the RM was coupled with an ACIA -
Asynchronous Communication Interface Adapter.
A software kernel was written (1/2 Kb) for
interfacing with an IBM-PC through a serial
RS-232C port.

The prototype board has a 32 Kb EPROM,
containing the 4010 configuration data (22 Kb),
and the kernel software which takes 1/2 Kb from
the RM's total addressable space of 2 Kb. A 32
Kb static RAM chip was added on the board, in
order to accommodate new configurations, new
software kernels and user programs for the
microprocessor. At configuration time, the
EPROM and RAM are both connected in a
"Parallel Master Low" mode to the 4010 device.
After power-odRESET or a high-to-low
transition on the DONE/PROG pin, the 4010
device loads the microprocessor configuration
from EPROM and starts the kernel.

Reconfiguring the system requires a new
configuration and a new kernel to be downloaded
from a host computer into the 32 Kb RAM. The
new configuration can be loaded at any moment
from the external RAM into the internal memory
of the 4010 device, creating another version of
the microprocessor with different instructions and
functions. The kernel contains a minimum of
commands: Memory Modify, Execute, Download,
Reconfigure and Download Configuration,

3.2.2

The process of reconfiguration is started through
the Reconfigure kernel command, which changes
the polarity of one of the microprocessor's
outputs connected to the DONE/PROG pin of the
4010 device. In this way, the microprocessor
reconfigures itself, allowing for easy verification
of new architectures.

A second microprocessor configuration and a
second cross-assembler and kernel were
developed in order to test the reconfigurability of
the microprocessor. The Download Configuration
command was used to load the new configuration
and kernel into the 32 Kb external RAM. The
reconfiguration of the 4010 device was started
with Reconfigure command, and the new
microprocessor was tested immediately and
successfully.

Summary

A reconfigurable microprocessor can have a
tremendous impact on remote control applications
where, not only changes in software but also in
hardware, increase flexibility and reliability.
Further studies will definitely uncover many new
areas of research, development and applications
for the reconfigurable microprocessor.

References

1. D.E. Van Den Bout, "AnyBoard: An FPGA
Based Reconfigurable System", IEEE Design &
Test of Computers, Sept. 1992, pp. 21-30.

2. K. S. Perianayagam, "FPGA Implementation of
the BH8000 Wormhole Router", Fourth Annual
IEEE International ASIC Conference, Sept.
23-27, 1991, pp. p16/3.1-~16/3.4.

3. Yee-Lu Zhaog & all, "A color video camera
using FPGA video processor", Fourth Annual
IEEE International ASIC Conference, Sept.
23-27, 1991, pp. ~16/7 .1-~16/7 .4 .

4. R. B. Brown &all, "A Microprocessor Design
Project in an Introductory VLSI course",
Microelectronic System Education Conference,
J u l y 22-25, 1991, pp. 195-205.

5. H. Kanbara, "KIJE-CHIP: A Microprocessor
for Education of Computer Architecture and LSI
Design", The Third Annual IEEE ASIC Seminar,
Sept. 17-21, 1990, pp. p10/4.1-p10/4.4.

1.
2.

3.

4.
5.
6 .
7.
8.
9.
10.
11.
12.

13.

14.
15.
16.
17.
18.
19.

20.

21.

22.

23.
24.
25.

26.
27.
28.
29.
30.
31.

32.

3 3 .
34.
35.
36.
37.
38.
39.
40.
41.

Instructions set

swi
rti

rts

clr
coin
P U1
psh
dec
inc
Is1
Isr
cl i

sei

dex
inx
des
ins

Ida -x

Ida x+

sta -x

sta x+

Idx #xval
Ida #Val
cmp #Val

sub addr
ora addr
add addr
and addr
eor addr
Ida addr

sta addr

jmp addr
jsr addr
Idx addr
stx addr
Ids addr
sts addr
beq addr
bmi addr
bcs addr

jmp x

software interrupt
return from interrupt
(software/hardware)
return from
subroutine
clear reg-a
complement reg-a
pull reg-a
push reg-a
decrement reg-a
increment reg-a
logical shift left reg-a
logical shift right reg-a
clear i (unmask
hardware interrupt)
set i (mask
hard ware interrupt)
decrement x
increment x
decrement s
increment s
indexed jump
load reg-a with
pre-decrement x
load reg-a with
post -incremen t x
store reg-a with
pre-decrement x
store reg-a with
post-increment x
load x immediate
load reg-a immediate
compare reg-a with
immediate value
substract from reg-a
logic or with reg-a
addition with reg-a
logic and with reg-a
logic eor with reg-a
load reg-a from
add re ss
store r e g 3 at
address
jump address
jump subroutine
load x
store x
load s
store s
branch if zero
branch if minus
branch if carry set

3.2.3

i
L

I :A

I I

)I . '
3.2.4

I

L
0
U)
U)
a,
0
0
L

0
L
0

r,
-4

