The Garp Architecture

John R. Hauser

University of California at Berkeley
Department of Electrical Engineering and Computer Sciences
Computer Science Division

October 1997

This work was supported in various parts by DARPA grant DABT63-96-C-0048, ONR grant N00014-
92-J-1617, NSF TITAN grant CDA 94-01156, and the California State MICRO Program.

Contents
1 Introduction

2 Reconfigurable array

2.1 Internal wire network o
2.1.1 Vertical wires (V wires)
2.1.2 Global horizontal wires (G wires)
2.1.3 Local horizontal wires (H wires)

2.2 Logic block configurations 00 Lo

2.3 Logic block functionso
2.3.1 Tablemode
2.3.2 Fifth input tablemode
2.3.3 Split tablemode
2.34 Select mode
2.3.5 Partial select modeo
2.3.6 Variable shift mode o o
2.3.7 Carry chainmode
2.3.8 Tripleaddmode

2.4 Internal timing

Integration of array with main processor

3.1 Processor control of array Lo
3.1.1 Array clock counter
3.1.2 Transfering data to/from array
3.1.3 Array condition flag Lo oo
3.14 Loading configurations o0
3.1.5 Memory queue control
3.1.6 Saving and restoring array state L.

3.2 Array control blocks
3.2.1 Processor interface blocks L.
3.2.2 Memory interface blocks L.

3.3 Array memory qUEUES a e e e

S O (V]

Ne}

11
17
17
18
18
20
21
21
23
25
27

1 Introduction

The Garp processor architecture combines an
industry-standard MIPS processor with a new
reconfigurable computing device that can be
used to accelerate certain computations. Fig-
ure 1 shows the organization of this architec-
ture at the highest level. The core of Garp is
an ordinary processor supporting the MIPS-
IT instruction set. Added to this is some-
thing called a reconfigurable array, which is a
two-dimensional array of small computing el-
ements interconnected by a network of wires.
Garp’s reconfigurable array somewhat resem-
bles field-programmable gate arrays (FPGAs)
available from Xilinx, Altera, and other man-
ufacturers.

Each computing element in the reconfig-
urable array can perform a simple logical or
arithmetic operation on operands that are at
most 2 bits in size. Larger computations are
achieved by aggregating these array elements
into larger computational circuits. The func-
tion of each array element and the connections
between the elements are determined by a con-
figuration of the array, which is loaded under
the direction of the main processor. The ar-
ray’s configuration can be changed as often as
desired, allowing the array to be applied to
various pieces of a computation over time.

Use of the reconfigurable array is controlled
exclusively by the program executing on the
main processor. Although a program can ex-
ecute entirely on the main processor without
referencing the reconfigurable array at all, cer-
tain computations can be completed faster by
the array than by the main processor. Thus it
is expected that for certain loops and/or sub-
routines, programs will switch execution tem-
porarily to the array to obtain a speedup.

This document defines the Garp architec-
ture by detailing Garp’s extensions to the
MIPS-IT architecture. Documentation for the
MIPS-IT architecture can be found elsewhere.

memory
instruction data
cache cache
main processor reconfigurable
(MIPS-II) array

Figure 1: Basic organization of Garp.

The reconfigurable array itself is described
first in Section 2, after which Section 3 cov-
ers the integration of the array with the main
processor and memory system.

1 control block
for each row

(< 23 logic blocks per row -
3 extra logic 16 logic blocks (32 bits) 4 extra logic
_blocks ‘Lmsb aligned with processor data word lsb‘L blocks R
< ,l‘ Vr >
(| T
(| T
(| T
(| T
(| T
(| T
(| T

A

\

4 memory buses

Figure 2: Organization of the reconfigurable array. In addition to the memory buses, the array
blocks are connected by an internal wire network (not shown).

L H{
-

-

o

Figure 3: Internal wiring within the array (independent of the memory buses). Here each
arrow represents multiple physical wire paths.

18-bit adder

OO
HNN N
[]

OO
OOt

32-bit comparator

OOyttt
Hiniminimininininininininininin

oot
HiBINININIE NN e

Hiniminimininininininininininin
oo
oo Dn

32-bit word alignment on memory bus

Figure 4: Typical natural layouts of multi-bit functions.

32-bit logical operation (bitwise)

2 Reconfigurable array

The core of the reconfigurable array is a two-
dimensional matrix of small processing ele-
ments called blocks (Figure 2). One block on
each row is known as a control block, and the
rest of the blocks are logic blocks. The number
of columns of blocks is fixed at 24. The num-
ber of rows is implementation-specific, but can
be expected to be at least 32.

The basic “quantum” of data within the ar-
ray is 2 bits. All wires are organized in pairs
to transmit 2-bit quantities, and logic blocks
operate on these values as 2-bit units. Oper-
ations on 32-bit quantities thus generally re-
quire 16 logic blocks.

As Figure 1 shows, the array has access to
the standard memory hierarchy of the main
processor. Four memory buses run vertically
through the rows for moving information into
and out of the array (Figure 2). During ar-
ray execution, the memory buses are used for
moving data to and from memory and/or the
main processor. For memory accesses, trans-
fers are limited to the central portion of each
memory bus, corresponding to the middle 16
logic blocks of each row. For loading configura-

tions and for saving and restoring array state,
the entire bandwidth of the memory buses is
used.

The memory buses are not available for
moving data between array blocks. An in-
ternal wire network provides connections be-
tween blocks. Wires of various lengths run
orthogonally vertically and horizontally. Fig-
ure 3 summarizes the available wire paths.
Vertical wires can be used to communicate be-
tween blocks in the same column, while hori-
zontal wires can connect a block to others in
the same row or in the next row below. There
are no connections from one wire to another
except through a logic block. However, every
logic block includes resources for potentially
making one wire-to-wire connection indepen-
dent of its other obligations.

In addition to performing a minor compu-
tation, each logic block can hold a few bits
of data in registers. These data registers are
latched synchronously according to an array
clock, the frequency of which is fixed by the
implementation. No relationship between the
array clock and the main processor clock is re-
quired, although it is intended that the two
clocks be the same. As is true for the main

#— shifts in
4

A B C
2 2 2
shifts out </—— logical or
4 arithmetic
carry out <—— function
7 12

memory ,

carry in

bus in 5 w
1 1
clocked clocked
register register
Zreg 2 Dreg] 2
memory
bus out 2
,1'2 2
[¢ :

U

vy

¢2

Vout

¢2

Hout

¢2

Gout

Figure 5: Simplified logic block schematic.

processor, the array clock governs the progress
of a computation in the array.

Each logic block can implement a function
of up to four 2-bit inputs. Operations on
data wider than 2 bits can be formed by ad-
joining logic blocks along a row (Figure 4).
Construction of multi-bit adders, shifters, and
other major functions along a row is aided by
hardware invoked through special logic block
modes. In particular, a fast carry chain runs
right-to-left across each row to facilitate large
adders and comparators that execute in a sin-
gle array clock cycle. Since there are 23 logic
blocks per row (the leftmost block on each
row is a control block), there is space on each
row for an operation of 32 bits, plus a few
logic blocks to the left and right for over-
flow checking, rounding, control functions, ex-
tended data widths, or whatever is needed.

Figure 5 shows the main data paths through
a logic block. Four 2-bit inputs (A, B, C, and
D) are taken from adjacent wires and are used
to derive two outputs. One output is calcu-
lated (Z), and the other is a direct copy of
an input (D). Each output value can be op-
tionally buffered in a register, after which the
two 2-bit outputs can be driven onto as many
as three pairs of wires leading to other logic
blocks. The logic block registers can also be
read or written over the memory buses.

The next few subsections cover the core ar-
ray architecture in more detail: first the inter-
block wire network, then the logic block data
paths, and finally the available logic block
functions (illustrated in Figure 5 as a non-
descript box). Discussion about the control
blocks and the memory buses are deferred un-
til the integration of the array with the main
processor is covered in Section 3.

2.1 Internal wire network

Internal wires run vertically and horizontally
within the array for moving data between logic
blocks. All wires in the network are grouped
into pairs to carry 2-bit quantities. Each pair
of wires can be driven by only a single logic
block but can be read simultaneously by all
logic blocks spanned by the pair. The wire
network is passive, in that a value cannot
jump from one wire to another without pass-
ing through a logic block.

The internal wires are divided into three
groups: the wertical wires (also called
V wires), the global horizontal wires (G wires),
and the local horizontal wires (H wires). Wires
running horizontally between logic block rows
are either global (G wires) or local (H wires).
The G wires span the entire 24-block width
of the array, while the H wires normally span
exactly 11 blocks. Only the V wires run ver-
tically, but unlike the horizontal wires, they
come in a range of lengths.

The pattern of horizontal wires is not the
same as that of the vertical wires, so the ver-
tical and horizontal dimensions of the array
are not symmetric. This asymmetry is due
to the preference for aligning multi-bit oper-
ations across rows and not columns. Never-
theless, the columns are all identical amongst
themselves; and the rows are also all identical.

The three categories of wires (V, G, and H)
are described in turn below.

2.1.1 Vertical wires (V wires)

Each column of array blocks has a set of ver-
tical wires (V wires) for making connections
among the blocks in that column. Because
the number of rows in the array is not strictly
fixed, the amount of vertical wiring available
depends on the number of rows a configuration
has. Figure 6 illustrates the patterns of ver-
tical wires for configurations with 8, 16, and

o168 8 4 4 4 4 o o 0 6432321616 8 8 4 4 4 4

Ooooooogd

(a) Vertical wires for 8 rows.

® 03216168 8 4 4 4 4

Ooooooogonoooooog

(b) Vertical wires for 16 rows.

(c) Vertical wires for 32 rows. |

Ooooooooouobooobgooooooonoogoogog

Figure 6: The vertical wires (V wires) for arrays of various sizes. The boxes represent a single
column of the array. Each line drawn actually represents a pair of wires (2 bits). Each wire pair
can connect to all of the blocks it spans vertically. The numbers at the top give the nominal
lengths of different wires.

w168 8 4 4 4 4 ® o 064323216168 8 4 4 4 4

&

Oooooogd

(a) Vertical wires for 8 rows.

© 3216168 8 4 4 4 4

X
X
D G Gl G G G

XXX XD XD X X X X XX XK

Ooooopoogooooooog

X

(b) Vertical wires for 16 rows.

(c) Vertical wires for 32 rows. | (<

OUooooooobooodogoooonobonoogoooooonog

Figure 7: Twisting of the vertical wires to obtain a recursive structure. Compare with Figure 6.
Note that the pattern of vertical wires for an 8-row array is repeated in the upper and lower 8
rows of a 16-row array. The 16-row pattern is in turn repeated in the upper and lower halves
of a 32-row array.

32 rows. Each V wire spans a specific set of
blocks, any one of which can be configured
to drive the wire. All logic blocks spanned
by a wire can read from that wire simultane-
ously. By configuring the vertical wires of sev-
eral columns in concert, multi-bit values are
easily moved among array rows.

Each pair of wires has a nominal length,
shown along the tops of the subfigures in Fig-
ure 6. Except for some wires with nominally
infinite length (global vertical wires), the nom-
inal lengths of wires are all powers of 2. The
actual length of a wire can be shorter than its
nominal length if the wire would extend above
the topmost row or below the bottommost row
(or both). Thus although a 32-row array in-
cludes wires with nominal length 64, no such
wire is longer than 32 blocks in reality. The
same obviously applies for the global wires la-
belled as having infinite length.

Each doubling in the number of rows mer-
its an increase in the number of “wire chan-
nels,” as seen in Figure 6. An array of 8 rows
has wires up to a nominal length of 16, and
one global wire pair (wires of infinite length).
An array of 16 rows adds wires with nomi-
nal length 32, and one more global wire pair.
Each successive doubling adds three new “wire
channels,” one of which is a global wire pair.
An array of 64 rows has wires with nominal
lengths up to 128, as well as 4 global wire pairs.

At each logic block, every vertical wire to
which the block could connect has assigned
to it a unique index that identifies the wire
from that logic block. A configuration uses
these indices to specify the vertical wires to
which a block connects. The assignment of in-
dices to wires is based on a peculiar twisting of
the wires illustrated in Figure 7. (This twist-
ing gives the vertical wires a recursive struc-
ture, a property which can be exploited to im-
prove the efficacy of the configuration cache

introduced in Section 3.1.4.!) Numbers are
assigned to wires according to how close the
wire is to the logic block in Figure 7. The
closest wire is assigned index number 0, the
next closest number 1, and so on. Note that,
because of the twisting, a wire’s number may
change from one logic block to another. The
assignment of indices is different for each logic
block.

There can be at most one driver for each
V wire. Configurations are checked when they
are first loaded to ensure that this requirement
is met. Configurations failing this test cannot
be loaded.

2.1.2 Global horizontal wires (G wires)

Unlike the vertical wires, which are always as-
sociated with only a single column of array
blocks, the G and H wires exist between rows
and are accessible by logic blocks in the rows
above and below the wires (Figure 8). A hor-
izontal wire can be read from both above and
below the wire, but it can be driven only by a
logic block in the row above the wire. Thus,
a horizontal wire can be used to communicate
among the columns of a single row, or from
a logic block in one row to a different col-
umn in the row immediately below. This bias
favors computations that proceed downward
from one row to the next.

The G wires are the ones in Figure 8 with
nominally infinite length. A G wire can be
driven by any logic block in the row above the
wire. As with the V wires, a configuration that
has more than one driver for a G wire cannot
be loaded.

Although Figure 8 shows the G wires as
spanning the control blocks in the leftmost col-
umn of the array, control blocks cannot exam-

IHow this recursive pattern can be exploited is not
covered by this document because such cache imple-
mentation details are transparent to a proper proces-
sor architecture.

dootooaboubodoooouoonoodod

11 —_—

gbuoboodooiguboodgoooguood

Figure 8: The horizontal wires between two rows. Again, each line actually represents a pair
of wires (2 bits). There is a full set of pairs of length 11 (H wires), and four 2-bit buses that
span the entire width of the array (G wires). Each wire pair can be read by all of the blocks
it spans horizontally, from logic blocks both above and below the wires.

DDDDDQDDDDD
OOooooogoogn

(a) Driven from the center.

PRIy S
hbbbbbbhdds

Figure 9: The logic blocks reachable via an

H wire driven from the center. D D D D D D D D D ﬂ:‘
OOOooddooon

(c) Driven from the right end (shift left).

Figure 10: The three options for driving the
H wires below a row.

10

ine or drive the G wires (Section 3.2).

2.1.3 Local horizontal wires (H wires)

The remaining wires in Figure 8 are H wires,
all with nominal length 11. Like the G wires,
each H wire can be driven by a logic block
from above the wire and can be read by any
block above or below the wire. Figure 9 shows
the logic blocks reachable via an H wire when
the wire is driven by the logic block centered
above the wire.

Unlike the other two wire categories (V
and G), the H wires are unique in that there
are limited options for choosing which logic
block drives each H wire. For each row, a sin-
gle choice is made that determines a unique
driver for all the H wires immediately below
that row. Figure 10 illustrates the three op-
tions available to each row. The default is for
every H wire below the row to be driven from
the center as in Figure 9. Alternatively, every
H wire below the row can be driven from near
the left end of the wire (Figure 10(b)); or ev-
ery H wire below the row can be driven from
near the right end of the wire (Figure 10(c)).

Which of the three options will be used for
driving the H wires across an entire row is de-
termined by the control block at the end of the
row. Because the choice of driver is made for
all wires along a row in concert, every H wire
always has exactly one driver. It is not pos-
sible for a configuration to specify more than
one driver for any H wire.

11

2.2 Logic block configurations

The principle data paths within a logic block
are depicted in Figure 5. A logic block selects
up to four 2-bit inputs, A, B, C, and D, from
among the wires at hand, and performs a log-
ical or arithmetic function on these inputs to
generate the output value Z. This value is
optionally buffered in an internal register and
then driven onto as many as three adjacent
wire pairs leading to other logic blocks. At
the same time, the original D input can also
be optionally buffered and driven onto any of
the same wire pairs.

A logic block can drive output values simul-
taneously onto exactly one of the V wire pairs,
plus one of the G wire pairs, plus one of the
H wire pairs. It is not possible for a single logic
block to drive more than one V wire pair, more
than one G wire pair, or more than one H wire
pair. A logic block can drive any one (or none)
of the V wire pairs at hand, and can drive any
one (or none) of the G wire pairs below the
block (but not above). As stated in the previ-
ous section, every logic block drives one H wire
pair below, in a pattern across each row that
is selected by the control block at the end of
the row. In each direction (V, G, and H), the
output can be selected from either the Z or
the D result.

For each logic block, 64 bits of internal con-
figuration state determine the active config-
uration of that block. The configurable ele-
ments of a logic block include the sources of
the inputs, the function performed on those
inputs, the operation of the registers, and
the destinations for the outputs. Figures 11
through 13 detail the encodings of a logic
block’s configuration state.

Figure 5 shows that a logic block’s registers
can be read from or written to the memory
buses. However, this path is not under the
control of the logic block itself and so is not
represented in the logic block configuration.

64 58 56 50 48 42 40 34 32
| A | A Bin | B Cin | C Din |mx|

32 16 13121110 9 8 5 0
‘ lookup table(s) ‘ mode ‘Z‘D‘H‘G‘V‘ G out ‘ V out ‘

Figure 11: Logic block configuration encoding. 64 bits of configuration state are needed for
each active block. The A’, B/, C', mx, lookup table, and mode fields together determine the
logic block function (Section 2.3).

[63..58] A in
000000 A =00 (binary)
000001 A =10 (binary)
000010 A = internal Z register
000011 A = internal D register
A

010000 =V wire pair 15

011111 A =V wire pair 0
100000 A = leftmost H wire pair above

101010 A = rightmost H wire pair above
101100 A = G wire pair 3 above

101111 A = G wire pair 0 above
110000 A = leftmost H wire pair below

111010 A = rightmost H wire pair below
111100 A = G wire pair 3 below

111111 A = G wire pair 0 below

Figure 12: Configuration of logic block inputs. The four inputs, A, B, C, D, have identical
encodings.

12

[12] Z
0 suppress latching of Z register; output Z directly
1 latch 7 register every cycle; output 7 register
[11] D
0 suppress latching of D register; output D directly
1 latch D register every cycle; output D register
[10] H
0 Hout = Z
1 Hout = D
9] G
0 Gout = 7
1 Gout = D
8] V
0 Vout = Z
1 Vout = D
[7..5] G out
000 no output to G wires below
100 output Gout to G wire pair 3 below
111 output Gout to G wire pair 0 below
[4..0] V out
00000 no output to V wires
10000 output Vout to V wire pair 15
11111 output Vout to V wire pair 0

Figure 13: Configuration of logic block registers and outputs.

13

A B C
i 2 i 2 i 2 42
logical or
arithmetic
function
7 12
clocked clocked
register register
Zreg 2 Dreg 2

Figure 14: Use of the D input as a completely
separate path for routing or copying.

Transfers over the memory bus are instigated
by the main processor and/or by the control
block at the end of each array row (Section 3).

Note that if the logic block function does
not require all four inputs, the D path can
be used as a completely independent path
for example to route and/or buffer a value be-
tween wires (Figure 14). Many of the available
logic block functions ignore the D input, leav-
ing it free for this purpose.

In addition to selecting among the internal
wires, any of the A, B, C, or D inputs can
be set to a constant. The supported constant
values are binary 00 and 10. Binary values
01 and 11 are not provided because they can
be synthesized internally by most of the logic
block functions. (These functions are covered
in the next section.)

The outputs of the internal registers can also
be connected back as logic block inputs, as
is illustrated for the Z register in Figure 15.
A notable application of this feature is to use

14

A=Zreg

B C D
Py
logical or

arithmetic
function

7 2

clocked
register

Zreg T2

Figure 15: Any of the A, B, C, or D inputs
can be taken from the internal registers.

A B D
2 r2 2
clocked
register
12
C=Dreg| AN
logical or
arithmetic
function
7 12
clocked
register
Zreg | 2
Jv{ 2 42

Figure 16: Delaying one logic block input us-
ing the D path.

the D path to buffer an input or the function
output for an extra cycle. Figure 16 shows how
an input can be delayed by connecting the D
register output to one of the function inputs.
Conversely, in Figure 17 the D path is tied to
the Z register output to delay the Z result one
cycle.

Each register can operate in either of two
modes. If a register is used as a buffer, it au-
tomatically latches a new value every clock cy-
cle. Alternatively, a register can be bypassed
on output, in which case it never latches ex-
cept when it is written to via a memory bus.
The input of a bypassed register is thus effec-
tively decoupled from the logic block. Note
that this implies, for instance, that the regis-
ters in the examples of Figures 15 and 17 could
not be bypassed on output, or else they would
cease to act as buffers.

From the perspective of the memory buses,
a bypassed register will hold a value written to
it until it is updated again over a memory bus.
By connecting the output of such a register
to a logic block input, a value latched from a
memory bus can be used immediately in the
logic block function. Figure 18 demonstrates
the use of both internal registers for holding
memory bus inputs in this way. Either register
can also be directly output via the D path, if
desired.

A register selected as a buffer can also be
written to over a memory bus, in which case
the memory bus value supercedes any inter-
nal value for that clock cycle. The value writ-
ten from the memory bus will be subsequently
overwritten in the next clock cycle.

Figure 19 gives a more detailed view of the
logic block internal paths.

A B C
PIT
logical or

arithmetic
function

7 12

clocked
register

Zreg T2

D=Zreg

clocked
register

r2

2 Dreg

Figure 17: Delaying the Z output using the
D path.

C
memory , L
bus in 0 \\ 132
register register
2 12 D=Dreg
A=Zreg B=Dreg \
logical or
arithmetic
function

z i 2
Figure 18: Values read over the memory buses
can be latched into either internal register and

used immediately as function inputs within
the logic block.

15

any any any any

adjacent adjacent adjacent adjacent
wire pair wire pair wire pair wire pair
12 12 12 2
\
0010 0010 (:|;) 10 00 10
A2 B A2 ﬁz pt?2
logical or
arithmetic
function
71 2
memory ,
bus in K
2 2
clocked clocked
register register
Zreg T 2 Dreg T 2
memory
bus out 2
12

,fz
(e T T

Vout i 2 Hout i 2 Gout i 2

any adjacent ~ H wire pair any G wire
V wire pair selected by pair below
control block

Figure 19: Logic block internals.

mode mx
[15..13] | [33..32]
000 D’ table mode
001 00 fiftth input table mode
001 01 split table mode
01k 00 select mode (k = 0 suppresses shifts in)
01k 01 partial select mode 7
01k 10 variable shift mode 7
10k result | carry chain mode (k = 0 suppresses carry in)
11k result | triple add mode (k = 0 suppresses shifts, carries in)

Figure 20: The function mode encodings. For many modes, bit k (bit 13) determines whether

shifts and carries in are to be suppressed.

2.3 Logic block functions

This section details the computational func-
tions that a logic block can perform. The main
inputs to this function are the four values A,
B, C, and D, each of which is 2 bits in size.
The primary output is Z, also 2 bits.

In addition to the primary ones, several mis-
cellaneous inputs and outputs are associated
with specific logic block functions. Most of
these extra connections are to a block’s nearest
leftmost and rightmost neighbors to support
multi-bit functions built out of multiple logic
blocks along a row. The H wires above a logic
block are also taken as extra inputs for vari-
able shifts. Details about these extra inputs
and outputs are given below as each becomes
relevant.

A logic block’s function is determined by
several fields in the active configuration—the
A’ B', C', mx, lookup table, and mode fields
(Figure 11). The mode and mx fields together
select among the eight possible function modes
(Figure 20). Each mode is defined below.
Most modes make some use of the lookup ta-
ble, although some do not. In all modes, the
A’ B’, and C’ fields choose some form of initial
perturbation of the corresponding inputs.

17

2.3.1 Table mode

Table mode is the basic mode for perform-
ing simple logical functions, as shown in Fig-
ure 21. After each input passes through a
crossbar function, a table lookup implements
an arbitrary bitwise logical operation on the
four inputs to give the result. Table mode is
selected when the configuration’s mode field is
000 (binary).

The function of the crossbars is illustrated
in Figure 22. As its name implies, each cross-
bar allows each of its 2 output bits to be se-
lected independently from either of its input
bits. There are four possibilities: pass the
incoming bits through unperturbed, duplicate
incoming bit Ag, duplicate incoming bit A;, or
swap the two bits. As there is no D’ configura-
tion field, the mx field selects the D crossbar
function in this mode.

The 16-bit lookup table specifies an arbi-
trary 4-input logical function f, as shown in
Figure 23. This function is independently ap-
plied to the high and low bits of the four
inputs to generate the high and low bits of
the result; i.e., Z; = f(A},B},C},D}) and
Zy = f(AlmB(l)a C(l)vDé))

crossbar crossbar crossbar crossbar

4-input table lookup

Z

Figure 21: Table mode (mode = 000). The
mx field selects the crossbar function for D’.

Was
Voo

Al Ao’
[57..56] A’ |
00 A= AgAg
01 A = AgA,
10 A=A Ay
11 A=A A

Figure 22: The crossbar functions.

2.3.2 Fifth input table mode

Fifth input table mode (Figure 24) is identi-
cal to table mode, except that the D’ input is
set to the value of Hout from the logic block
in the same column in the row above. This
is the value being driven onto the H wires by
the logic block immediately above. (There is
always some such value, with the exception of
the first row of a configuration.) The usual
D path through the logic block is not affected
(Section 2.2); fifth input table mode simply ig-
nores the D input to the logic block function.
The mode provides a fourth input for calcu-
lating Z independent of D.

Fifth input table mode is selected when
mode = 001 and mx = 00. The mode is il-
legal on the topmost row of a configuration.

2.3.3 Split table mode

Split table mode (Figure 25) is again just like
table mode, except that for this mode D’ is
fixed at 10 (binary). This has the simple effect
of allowing the two bits of Z to be calculated
using separate 3-input functions, as shown in
Figure 26. Split table mode is chosen when
mode = 001 and mx = 01.

18

32 16

Z bit
1010101010101010 «— Abit
1100110011001100 «— B bhit
1111000011110000 «— C'bit
1111111100000000 «— D'bit

Figure 23: Interpretation of the lookup table in table mode and fifth input table mode. The
lookup table function f takes 4 input bits and returns a single output bit. Listed underneath
each table entry is the pattern of input bits corresponding to that table output. The 2 bits
of Z are calculated independently using the same function: Z; = f(A}, By, C},D}) and Z; =
F(Ah, By, Ch, D).

Hout
A B C above A B C
Tz Tz Tz Tz 42 42 42
v v v
crossbar crossbar crossbar crossbar crossbar crossbar
A,JZHB,J\VZ Fz & A’JZHB,RZ Vyz/m
4-input table lookup 4-input table lookup
I
Jvfz 2
Z Z
Figure 24: Fifth input table mode (mode = Figure 25: Split table mode (mode = 001,
001, mx = 00). “Hout above” is the value mx = 01).

driven onto the H wires by the logic block
immediately above in the same column.

32 24 24 16

Z1 ‘ ZO
10101010 « A 10101010 « A
11001100 «— B 11001100 «— Bj
11110000 «—C] 11110000 «—C}

Figure 26: Interpretation of the lookup table in split table mode. Forcing D] =1 and Dj =0
causes the 2 bits of Z to be calculated based on separate 3-input functions. Compare with
Figure 23.

19

Hout

A B above D C
2 2 2 2 2
" optional . .
shift A out shift, invert shift A in
hift B out 12| optional hift B in
s ou \\ shift, invert] s
2 .
: optional . .
shift C out shift, invert shift C in
A’ B’ ' 2
00 01 10 11
select </
2
Z

Figure 27: Select mode (mode = 011, mx = 00). If mode bit 0 is set to 0 (i.e., mode = 010,
mx = 00), the function is the same except that all shifts in are assumed to be 0.

2.3.4 Select mode

Select mode implements a multiplexor of four
inputs, as illustrated in Figure 27. In place
of crossbar functions, two of the multiplexor
inputs, A and B, and also the controlling in-
put C, are first optionally shifted and/or com-
plemented (inverted) to form the perturbed
values A', B', and C'. The resulting C' is then
used to select one of the other four inputs as
follows:

C'|z
00 | A
01 | B’
10 | Hout from row above
11 | D

As in fifth input table mode, one of the inputs
is the value of Hout from the logic block in the
same column in the row immediately above. It
is illegal for C' to be 10 (binary) if select mode

is used on the topmost row of a configuration.

The functions of the shift-invert blocks are
shown in Figure 28. A 2-bit input is first op-
tionally shifted left one bit, and then the re-
sulting 2-bit value (shifted or not) is optionally
complemented. When a shift is performed, a
bit to shift in is taken from the high bit of the
same input from the logic block to the imme-
diate right (regardless of what mode the logic
block on the right is in). It is illegal to depend
on the bit shifted into the rightmost logic block
on a row.

The shifts into all three shift-invert blocks
can together be forced to 0 by the configura-
tion. This option is useful for the rightmost
logic block of multi-block functions and also
for the rightmost logic block on a row. Shifts
into the individual shift-invert blocks cannot
be independently suppressed.

Select mode is chosen with mode = 010 or

20

Al Ao
shift out shift in
\[or zero
Al' Ao’
[57..56] A! |
00 A= A1 Ag
01 A’ = ~(A; A)
10 A= AgA_,
11 A= —(AgA_1)

Figure 28: The optional shift-invert functions.
The symbol represents logical negation
(inversion). If the function mode suppresses
shifts in, bit A_; is 0. Otherwise, bit A_; is
taken from bit A; from the logic block on the
right (regardless of the mode the logic block
on the right is in).

w_»
-

21

011, and mx = 00. The first case (mode =
010) suppresses shifts in, while the second
(mode = 011) does not.

Select mode performs no table lookups. The
configuration’s lookup table field must be set
to the constant

32 16

1100110011001100

2.3.5 Partial select mode

Partial select mode (Figure 29) is identical to
ordinary select mode except that the set of
inputs is different:

'z
00 | A
01 | B
10 | B (not shifted or inverted)
11 | 00

This mode is enabled when mode = 010 or
011, and mx = 01. Setting mode to 010 sup-
presses perturbation shifts in, while mode =
011 does not.

In partial select mode there is no restric-
tion on the value of C' on the topmost row of
a configuration (in contrast to ordinary select
mode).

2.3.6 Variable shift mode

Variable shift mode supports the implementa-
tion of variable shifts across a row (Figure 30).
As with the select modes, the B and C' inputs
are first passed through shift-invert perturba-
tion functions. The resulting B’ and C’ values
are then used to select two bits from among
the H wires above. The A and D inputs are
ignored.

The 11 pairs of H wires are treated as a sin-
gle 22-bit value v, with the physically leftmost
wire pair contributing the most significant two
bits v91 and vag, and the physically rightmost

shift A out

shift B out

shift C out

Figure 29: Partial select mode (mode = 011, mx

shift B out

A B C
2 2 2
optional
shift, invert|
’\/ 2 optional
\ shift, invert]
’{' 2 optional
shift, invert|
00 2
A"\ B \|/ C
00 01 10

select

11 </

Z

shift A in

shift B in

shift C in

= 01). Again, if mode bit 0 is set to 0
(mode = 010, mx = 01), the function is the same except that all shifts in are assumed to be 0.

shift C out

B C H wires above
2 2
R shift B in
shift, invert S
2 -
optional))
shift, invert| shift C in
B’ c T2

shift select

12

V4

Figure 30: Variable shift mode (mode = 011, mx = 10). If mode bit 0 is set to 0 (mode = 010,
mx = 10), the function is the same except that shift B in and shift C in are assumed to be 0.

22

wire pair contributing the least significant two
bits v1 and vg. If monzero, the 4-bit concate-
nation B} B{C{C} acts as an index into this
22-bit integer. Given B{B{C{C} =1 # 0, bits
vig—; and vig_; are selected to give Z.

In the special case that the index B} B{C;C}
is zero, 7 is set to Hout from the logic block
in the same column in the row immediately
above (regardless of which pair of wires the
logic block above is actually driving).

Variable shift mode is selected when mode =
010 or 011, and mx 10. In the case of
mode = 010, shift B in and shift C in are
forced to 0.

Variable shift mode is illegal on the topmost
row of a configuration. Also, as for the select
modes, this mode performs no table lookups,
and the lookup table field must be set to the
constant

32

16
1100110011001100\

2.3.7 Carry chain mode

Carry chain mode performs a logical or arith-
metic function involving the fast carry chain
across a row. The mode is diagramed in Fig-
ure 31. Only three inputs, A, B, and C, are
used; the D input is ignored. (The D path
still exists and can be employed separately;
see Section 2.2.) Like table mode, the three
inputs are passed through crossbar functions
before being applied to table lookups. The ta-
ble lookup results are used to control the carry
chain, and then these same values are logically
combined with the carry chain output to ob-
tain the final result Z.

The table lookups deliver a total of four bits
that control the carry chain: a propagate and a
generate signal are associated with the low bit
of the result, and another pair of such signals
are associated with the high bit of the result.
Figure 33 shows how these control bits affect

23

the carry chain. If a propagate bit is 1, the
carry into that position is propagated to the
next higher bit position; otherwise, the corre-
sponding generate value is used as the carry
out to the next bit position. When propagate
is 1, the generate value is ignored by the carry
function (although it may still be used in the
result function; recall Figure 31). As Figure 33
shows, the carry chain repeats the same oper-
ation at each bit position.

The operation of the lookup tables is docu-
mented in Figure 32. There are two 3-input ta-
bles: one is the propagate table, and the other
the generate table. Fach table is looked up
twice, once for the low bit position and once
for the high bit position.

The carry chain outputs a 2-bit value K,
comprising the carry into each bit position
(Figure 33). This is fed into the result func-
tion, along with the original propagate and
generate signals, which are renamed to U
and V, respectively. The result function im-
plements one of four bitwise logical functions
given in Figure 34, chosen by the mx field of
the configuration.

A logic block is in carry chain mode when
mode = 100 or mode = 101. The first case
forces the carry into the low bit (Kg) to be 0.
The second case accepts the carry out from
the logic block on the right.

It is illegal to depend on the carry in when
the logic block to the immediate right is not
in carry chain mode. Likewise, it is illegal to
depend on the carry into the rightmost logic
block on a row.

carry out

12 12 12
crossbar crossbar crossbar
A 2 B 1 2 c 1 2
3-input 3-input
table lookup table lookup
propagate | 2 generate |’ 2
carry chain

2
Ul V| K

result function

carry in

12

z

Figure 31: Carry chain mode (mode = 101). The mx field selects the result function. If mode
bit 0 is set to 0 (i.e., mode = 100), the function is the same except that the carry in is assumed

to be 0.

32

24 24

it (propagate ‘

16

e

b
0
1
1

)
101010
001100 «— B'bit
110000

Figure 32: Interpretation of the lookup table in carry chain mode.

24

propagatel propagateo

generatel generate0

carry in

cal ut
1Ty o or zero

K1

Ko

Figure 33: Operation of the carry chain. The
low-order carry in can be forced to 0 by the
logic block mode.

[33..32] mx |
00 Z=V
01 Z=VVK
10 Z=Usd K
11 Z==-(UasK)

Figure 34: The result functions for modes us-
ing the carry chain.

25

2.3.8 Triple add mode

The most complex mode is triple add mode,
which can perform a sum or difference of three
inputs (Figure 35). Each of the three in-
puts is first passed through a shift-invert func-
tion (Figure 28), and then a carry-save ad-
dition is performed on the perturbed inputs.
The two outputs of the carry-save addition
are used to index two lookup tables to ob-
tain the carry chain propagate and generate
signals (Figure 36). From this point forward,
triple add mode is identical to the simpler
carry chain mode.

The carry-save addition performs the usual
function, with a so-called “sum” output calcu-
lated bitwise as A’ ¢ B’ @ C’, and a carry out-
put calculated as (A’ AB")V(A'AC")V(B'AC")
shifted left by one bit position in the same
manner as the shift-invert functions. As with
the shift-invert functions, the shift carry in (ul-
timately carry,) can be forced to 0 by the con-
figuration mode field.

Triple add mode is selected when mode =
110 or 111. The first case forces the shifts in
and the carry in to be 0, whereas the second
case accepts these from the logic block on the
right. The mx field specifies the result func-
tion.

As for carry chain mode, it is illegal to de-
pend on the carry in or the shift carry in when
the logic block to the immediate right is not in
triple add mode. Likewise, it is illegal to de-
pend on the shifts or carry into the rightmost
logic block on a row.

12 12 12
shift A out optional shift A in
shift, invert|
2 TONns
shift B out + optional shift B in
\ shift, invert]
12 iOns
shift C out optional shift C in
shift, invert]
2
A" B C’
. carry-save . .
shift carry out addition shift carry in
carry | 2 sumq?
2-input 2-input
table lookup table lookup
propagate T2 generate T2
carry out carry chain carry in
2
Ul V| K

result function

12

Z
Figure 35: Triple add mode (mode = 111). The mx field selects the result function. If mode

bit 0 is set to 0 (i.e., mode = 110), the function is the same except that all shifts and carries
in are assumed to be 0.

26

32 24 24 16

‘Ubit (propagate)‘ ‘ V bit (generate) ‘
10101010 ¢— carry bit 10101010 ¢— carry bit
11001100 «<— sum bit 11001100 «— sum bit

Figure 36: Interpretation of the lookup table in triple add mode. Each table is represented by
eight bits, even though four bits would be sufficient. The redundancy in the tables is required
and must be consistent.

2.4 Internal timing

Delays within the array are defined in terms
of the sequences that can fit within each array
clock cycle. Only three sequences are permit-
ted:

e short wire, simple function, short wire,
simple function;

e long wire, any function not using the
carry chain; or

e short wire, any function.

Any other sequence must be assumed to re-
quire multiple clock cycles. A short wire is a
local horizontal wire (H wire) or a vertical wire
of length 8 or less. A simple function is either
a table mode function or a traversal of the in-
dependent “D path” in a logic block. At the
end of a cycle, values can be latched in logic
block registers without affecting these rules.
Within combinatoric circuits, it is not nec-
essary to latch intermediate results in regis-
ters at the end of every clock cycle unless the
latches are desired to achieve pipelining. How-
ever, there is a maximum allowed path delay
between registers of 8 array clock cycles.

27

3 Integration of array with

main processor

The loading and execution of array config-
urations is under the control of the main pro-
cessor. Several instructions have been added
to the MIPS-II instruction set for this pur-
pose, including ones that allow the proces-
sor to move data between the array and the
processor’s own registers. Configurations and
data are transferred to/from the array over the
memory buses that run through the entire ar-
ray (Figure 2).

During array execution, the array itself can
initiate reads or writes to memory (via the
memory buses) without intervention by the
main processor. Such memory accesses are co-
ordinated by the control blocks at the end of
each array row. Array memory accesses go
through the same memory hierarchy as the
main processor, including the first-level data
cache. The array thus has available to it a rel-
atively large, fast memory store which is au-
tomatically kept consistent with memory ac-
cesses made by the processor.

In addition to on-demand “random” ac-
cesses to memory, three array memory queues
provide enhanced support for sequential mem-
ory accesses.

3.1 Processor control of array
3.1.1 Array clock counter

Array execution is governed by a countdown
counter called the array clock counter. While
the clock counter is nonzero, it is decremented
by 1 with each array clock cycle. When the
array clock counter is zero, the latching of ar-
ray registers is disabled, effectively stopping
the array.

A configuration can be loaded into the ar-
ray only when the clock counter is zero. Af-
ter loading a configuration, the main proces-

28

sor can set the array clock counter to nonzero
to start the array executing for a given num-
ber of clock cycles. The counter can be set
using the gabump instruction detailed in Fig-
ure 38(a). Various other processor instructions
are also able to set the counter in addition to
their other functions.

There is no defined relationship between the
array clock and the rate at which the main pro-
cessor executes instruction. To ensure proper
synchronization, most processor instructions
that interact with the array first stall until the
clock counter reaches zero before performing
their function. The clock counter thus pro-
vides the mechanism by which array calcula-
tion delays are interlocked with subsequent de-
pendent processor instructions.

Since the number of clock cycles needed for
a calculation may not be known in advance,
the array has the ability to halt itself when-
ever its function is complete, by forcibly zero-
ing the clock counter. How the array can be
configured to do this is discussed along with
the other functions of the control blocks in Sec-
tion 3.2. It is also possible for the processor
to halt the array at any time by zeroing the
clock counter. The gastop instruction which
performs this function is covered in connection
with context switches in Section 3.1.6.

The array clock counter is a 32-bit register,
of which only the least significant 31 bits ac-
tually count down. The most significant bit is
a “sticky” bit: once set, it remains set until
the entire counter is forcibly zeroed either by
the array or by the processor (gastop). Since
the array is halted only when the entire 32-bit
counter is zero, the most significant bit acts
as an “infinity” bit. If the latency of an ar-
ray calculation is entirely data-dependent, the
processor can set the most significant bit of
the clock counter to start the array operat-
ing indefinitely. The array can then zero the
clock when its computation completes. If the
processor is ready to receive array results be-

19

4

DO00000000000000000000000

(a) mtga, mfga, mtg
15

av, mfgav, mtga?2.

Dooooooog

DDDDDDDDDDDDDDD|

(b) mtgavy

22 16

, mfgavy.

OO0000000000000000000000

(c) mtgavz,

Figure 37: The set of logic blocks read or writte
(move to Garp array) instructions copy a 32-bit

, mfgavz.

n by various processor instructions. The mtga
word from a processor register to a contiguous

set of logic block registers along an array row. The mfga (move from Garp array) instructions
transfer a word in the opposite direction. Since logic block registers are 2 bits each, 16 logic
blocks correspond to a 32-bit data word. The leftmost block on each row is a control block

which contains no visible data registers.

fore the array is done, the first instruction at-
tempting to retrieve data from the array will
interlock as usual until the counter is zeroed.

3.1.2 Transfering data to/from array

The processor has a collection of instructions
for copying data between the processor regis-
ter file and the registers in array logic blocks.
Since a single logic block’s Z or D register is
only 2 bits, most data transfers gang together
16 contiguous logic blocks on a row so that 32
bits of data are copied at a time. An individ-
ual transfer copies to or from the 16 combined
7 registers or the 16 combined D registers of
the 16 logic blocks. For each transfer opera-
tion, an array row number must be specified,
along with whether the array source/target is
to be the Z or D registers. These two param-
eters (row number and Z/D selection) are en-
coded as constants within some instructions,
while other instructions obtain them from an
additional register operand.

29

Each row has 23 logic blocks, but an indi-
vidual transfer operation only touches at most
16 of them corresponding to a full 32-bit word.
The set of logic blocks read or written is fixed
for each particular instruction (Figure 37).
Most instructions copy to/from only the mid-
dle 16 logic blocks found in columns 4 through
19 inclusive. A few variant instructions allow
access to the logic blocks at the extreme left or
right ends of a row. The rightmost logic block
is always associated with the least significant
2 bits transferred, and the leftmost logic block
is associated with the most significant 2 bits.

The instructions for copying data to/from
the array are detailed in Figures 38(b) (e).
The mtga (move to Garp array) instruction
transfers a 32-bit word from a processor regis-
ter to the Z or D registers of the middle 16
logic blocks of a fixed row. The row num-
ber and the choice of Z or D registers are
encoded as constants in the mtga instruction.
The mfga (move from Garp array) instruction
is the same except it transfers in the opposite

direction, from the array to a processor regis-
ter. Instructions mtgav and mfgav are similar,
but instead of hardcoding the array row num-
ber and Z/D register choice in the instruc-
tion, a second register operand supplies these
parameters.

Access to the logic blocks in the leftmost
and rightmost columns of a row is provided by
variants of mtgav and mfgav. The mtgavy and
mfgavy instructions access columns 0 through
15 but are otherwise identical to mtgav and
mfgav. At the other end of a row, variants
mtgavz and mfgavz read or write the 14 bits
of columns 16 through 22. (Column 23 is
left out because it contains the control blocks,
which have no visible data registers.) These
last two instructions are unusual in that they
only transfer 14 bits. For mtgavz, the most
significant 18 bits of the source processor reg-
ister are ignored; while in the other direction,
mfgavz zeros the most significant 18 bits of the
destination processor register.

Unlike the other transfer instructions,
mtga2 can transfer more than one word at
a time. In one operation, mtga2 copies two
32-bit processor registers to the middle logic
blocks of two or more independent array rows.
Both values can be copied to multiple desti-
nation rows at once. The destination rows
are not encoded in the instruction but are in-
stead selected by the array itself based on a
match code encoded in the mtga2 instruction.
Additional explanation can be found in Fig-
ure 38(e) and Section 3.2.1.

The processor can copy to or from the ar-
ray only when the array clock counter is zero.
If the clock counter is nonzero, a data transfer
instruction will stall until the clock counter be-
comes zero. The instructions mtga, mfga, and
mtga2 can also set the clock counter to a small
constant after performing their transfer.

30

3.1.3 Array condition flag

The array has a 1-bit condition flag that can
be examined by the main processor. Ordinar-
ily the array sets this flag to indicate some con-
dition to the main processor. Two processor
branch instructions (Figure 38(f)) are based
on the array condition flag: bgat and bgaf.
The bgat instruction branches if the condition
flag is set (true), whereas bgaf branches if the
flag is clear (false).

3.1.4 Loading configurations

The loading of array configurations is un-
der the control of instructions executed by
the main processor. Loading a configuration
makes the configuration active, so that the
configuration controls the behavior of the ar-
ray. Only one configuration can be active in
the array at a time. Loading a new configura-
tion replaces the previous one.

Although logically only one configuration
can be loaded at a time, in practice one can
expect an actual implementation to incorpo-
rate within the array a configuration cache of
recently loaded configurations, so that the pro-
cess of “loading” a configuration does not nec-
essarily involve transferring it from external
memory every time. Only a few processor
clock cycles should be needed to load a con-
figuration from the configuration cache. If a
configuration is not in the cache, it can be ex-
pected that close to the full aggregate band-
width of the memory buses will be used to load
it from external memory.

The smallest configuration is one row, and
every configuration must fill exactly some
number of contiguous rows. When a config-
uration is loaded that uses less than the entire
array, the rows that are unused are automat-
ically made inactive. The first, topmost row
of a configuration is row number 0 by default,
and subsequent rows are labelled with increas-

ing integers.

The active configuration can be changed
only when the array clock counter is zero
(the array is halted). The instructions that
load configurations will stall waiting for the
clock counter to become zero before perform-
ing their function.

The simplest instruction for loading config-
urations is gaconf, which takes a single regis-
ter operand giving the address of the config-
uration stored in memory. The first 4 bytes
(32 bits) at this address are interpreted as a
count of the number of rows of the configura-
tion. Following this row count is 8 bytes for
each block (control blocks and logic blocks)
of the configuration, starting with 24 x 8 =
192 bytes for row 0, and so on for each row.
The configuration for a row contains first the
8 bytes for the control block, followed by the
logic block in the leftmost column 22, on down
to the rightmost logic block in column 0. In
addition to loading a configuration into the ar-
ray and making it active, gaconf initializes the
Z and D registers of all logic blocks to zero.

During the time a configuration is active,
its copy in memory must not be changed be-
cause it may need to be reloaded at any time.
(Reloads can be caused by context switches
in a multitasking system, for example.) Fur-
thermore, if an inactive configuration is mod-
ified in memory and explicitly reloaded, the
changes may not take effect if an earlier un-
modified version of the configuration is still
in the cache. Before an attempt is made to
load a modified configuration, the previous
version must be cleared for certain from the
cache. The gacinv instruction performs this
function; and it can be executed even while
another configuration is running.

The gaconf instruction does not allow state
to remain in the logic block registers from one
configuration to another. A more complex pair
of instructions supports configuration overlays
for this purpose. The gaalloc instruction re-

31

serves a group of rows into which subsequent
configurations will be overlayed. Like gaconf,
gaalloc displaces any currently active config-
uration and zeros all of the Z and D registers
in the array; but no configuration is yet loaded
by the instruction. The gaconfo instruction
loads a configuration into a previously allo-
cated group of rows. An overlayed configura-
tion may not extend beyond the rows allocated
by gaalloc, but it need not fill the allocation,
and it may be loaded starting at a row other
than the first allocated row. All of the register
state within the allocated space is preserved
from one overlay to another. Nevertheless, if
an overlay is smaller than the allocated space,
only the rows of the overlaying configuration
are made active. Inactive rows hold their val-
ues until subsequently made active.

The gaalloc instruction takes as an
operand a pointer to a 32-bit word in mem-
ory, the value of which is the number of con-
tiguous rows to allocate. Although logically
this indirection through a pointer is unneces-
sary (the register operand could just as easily
have specified the number of rows directly),
the pointer is intended to be used as an iden-
tifier internally by the cache. If a later exe-
cution of gaalloc precedes a repeat sequence
of gaconfo overlays, the same pointer should
be used as the operand to both gaalloc’s in
order to maximize cache utilitization.

For completeness, gareset “unloads” any
active configuration. Array activity is dis-
abled until such time as another configuration
is loaded.

3.1.5 Memory queue control

Two processor instructions (galqc and gasqc)
are used to load and store the state of the array
memory queues. The details of these instruc-
tions are deferred until Section 3.3 when array
memory queues are covered.

3.1.6 Saving and restoring array state

Information about the active configuration is
stored in three read-only registers:

$gacr3 — The pointer that was the argument
to gaalloc when the current array al-
location was made. The 32-bit word at
this address gives the number of rows al-
located. If the array allocation was made
by gaconf (without a separate gaalloc),
this is the pointer that was the argument
to gaconf.

$gacr4 — The pointer to the configuration in
memory that was the argument to gaconf
or gaconfo.

$gacr5 — The row offset that was the argu-
ment to gaconfo. If the active configura-
tion was loaded by gaconf, this value is
ZET0.

The cfga instruction can be used to retrieve
any one of these values into a processor regis-
ter.

When a context switch occurs while the ar-
ray is active, it must be possible to suspend
the array and save its state so that the com-
putation can be resumed at a later time. The
first step toward suspending the array is to
execute the gastop instruction, which in one
step copies the clock counter to a processor
register and zeros the counter. The current
allocation and configuration can be obtained
from the array control registers above, and
the logic block registers can be read out using
the mfgav instructions already described. The
state of the array memory queues is saved us-
ing the gasqc instruction. The remaining in-
ternal state of the array, including the status
of pending memory reads, can be written to
memory using the special gasave instruction.

Resuming an array computation requires
first that the array allocation be restored by
executing gaalloc with the previously saved

32

value from $gacr3. The active configuration
is reloaded by executing gaconfo with the val-
ues that were saved from $gacr4 and $gacrb.
The logic block registers can be restored us-
ing simple mtgav instructions, while galqc
reloads the state of the array memory queues.
Once the logic block registers are restored,
garestore can be used to read back the in-
ternal state that had been saved by gasave.
The final step for resuming the array is to use
gabump to restore the array clock counter to
the value originally returned by gastop.

Besides reading back the array’s internal
state, garestore also ensures that combina-
torial propagations in the array are given time
to complete, following the recent restoration
of the logic block register values.

Increase array clock counter
32 25 21 16 11

0100111\0000\00000\ rd \000018\00008

gabump rd

Adds the value in register rd to the array clock counter. The addition is performed modulo
232 If a carry out of the most significant bit occurs (unsigned overflow), the most significant
bit of the clock counter is set.

Figure 38(a): Instruction for setting or incrementing the array clock counter.

Copy word to array
32 25 21 16 6 5 0

‘0 10011 1‘1 00 1‘ rt row number ‘R‘clock count

mtga rt,reg,count
mtga ri,reg

Copies the value in register rt to the middle 16 logic blocks of a fixed array row. The array row
number is encoded as an unsigned integer constant in the instruction. If instruction bit R is 0,
the concatenation of the sixteen 2-bit Z registers in columns 4 through 19 is the destination of
the copy. If R is 1, the concatenation of the sixteen D registers in columns 4 through 19 is the
destination. Column 4 receives the least significant 2 bits of the value copied and column 19
receives the most significant 2 bits.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. The copy is then performed, after which the clock counter is set to the 5-bit unsigned
integer constant encoded in the instruction.

For the reg argument to mtga, the assembler accepts the syntax $zn or $dn, where n is the
array row number expressed as a decimal integer numeral. (For example, $z19 denotes the
Z registers of array row 19.) The count argument must be an integer constant. If count is not
given it defaults to zero.

Copy word from array
32 25 21 16 6 5 0

010011 1‘1 00 0‘ rt row number ‘R‘clock count

mfga rt,reg,count
mfga ri,reg

This instruction is identical to mtga except that the direction of the copy is reversed.

Figure 38(b): Instructions for copying a word to/from a specific array row.

33

Copy word to array, variable row
32 25 21 16 11 5 0

0100111\0000\ rt rd 10001100000

mtgav rt,rd

Copies the value in register rt to the middle 16 logic blocks of the array row specified by register
rd. This instruction is similar to mtga except that the row number and the R field of mtga are

given by the value of register rd as follows:
32 11 10

000000000000000000000\ row number ‘R‘

As with mtga, if the least significant bit of rd (bit R) is 0, the destination of the copy is the
concatenation of the sixteen Z registers in columns 4 through 19 of the specified row; whereas if
the least significant bit of rd is 1, the destination is the concatenation of the sixteen D registers
in columns 4 through 19. Column 4 receives the least significant 2 bits of the value copied and
column 19 receives the most significant 2 bits.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero before the copy is performed.

Copy word from array, variable row
32 25 21 16 11

5 0
0100111\0000\ rt rd 100010[00000

mfgav rt,rd

This instruction is identical to mtgav except that the direction of the copy is reversed.

Figure 38(c): Instructions for copying a word to/from a variable array row.

34

Copy word to array, variable row, low columns
32 25 21 16 11

5 0
0100111\0000\ rt rd 10010100000

mtgavy rt,rd

This instruction is identical to mtgav except that the destination of the copy is columns 0
through 15 of the specified row. Column 0 receives the least significant 2 bits of the value
copied and column 15 receives the most significant 2 bits.

Copy word from array, variable row, low columns
32 25 21 16 11

5 0
0100111\0000\ rt rd 10010000000

mfgavy rt,rd

This instruction is identical to mtgavy except that the direction of the copy is reversed.

Copy word to array, variable row, high columns
32 25 21 16 11

5 0
0100111\0000\ rt rd 10000100000

mtgavz rt,rd

This instruction is identical to mtgav except that the destination of the copy is columns 16
through 22 of the specified row. Only the least significant 14 bits of source register rt are
copied. The most significant 18 bits of r¢ are ignored. Column 16 receives the least significant
2 bits of the value copied and column 22 receives the most significant 2 bits.

Copy word from array, variable row, high columns
32 25 21 16 11

5 0
0100111\0000\ rt rd 10000000000

mfgavz rt,rd

This instruction is identical to mtgavz except that the direction of the copy is reversed. The
most significant 18 bits of destination register rt are zeroed.

Figure 38(d): Instructions for copying a word to/from the leftmost or rightmost columns of an
array row.

35

Copy 2 words to array
32 25 21 16 11 5 0

010011 1‘1 01 0‘ rt rd match code |clock count

mtga?2 rt,rd,match,count
mtga?2 rt,rd,match

Copies the values in registers rt and rd to the middle 16 logic blocks of some set of array rows.
The destination rows are determined indirectly through a 6-bit match code encoded in the
instruction. The values of registers rt and rd are placed on memory buses 0 and 2 respectively,
and each row does or does not latch one of these values according the current configuration’s
response to the given match code. The control block on each row can be configured to respond
to a specific match code value by latching from either bus into either the Z or D registers in
columns 4 through 19 of that row. (Additional information can be found in Section 3.2.1.)

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. The copy is then performed, after which the clock counter is set to the 5-bit unsigned
integer constant encoded in the instruction.

The match and count arguments must be integer constants. If count is not given it defaults
to zero.

Figure 38(e): Instruction for copying two words to two or more array rows.

Branch on array condition true
32 16 0

‘0100110100000001 offset ‘

bgat offset

Causes instruction execution to branch if the array condition flag is set (#rue). Like other
MIPS branch instructions, the instruction following this one is executed before any branch is
taken. The instruction following this one must not be a branch.

Branch on array condition false
32 16 0

‘0100110100000000 offset ‘

bgaf offset

Causes instruction execution to branch if the array condition flag is clear (false). Like other
MIPS branch instructions, the instruction following this one is executed before any branch is
taken. The instruction following this one must not be a branch.

Figure 38(f): Instructions for branching on the state of the array condition flag.

36

Load array configuration
32 25 21 16 11

5 0
0100111‘0000‘ Tt 00000/11011000000

gaconf 7t

Loads a configuration from memory and makes it active. Register rt gives the starting address
of the configuration in memory.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. Any array reads still in progress are then cancelled, and the existing array allocation, if
any, is released. Sufficient space is allocated within the array to hold the specified configuration,
and the configuration is loaded and made active. The Z and D registers in the newly allocated
space are zeroed. This instruction is equivalent to the sequence of a gaalloc instruction
followed by gaconfo.

The copy of the configuration in memory must not change until a flush configuration in-
struction (gacinv) is executed for this address.

Reset array
32 25 21 16 11 5

0
\0100111\0000\000000000011001000000

gareset

Resets the array, releasing the existing array allocation.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. Any array reads still in progress are then cancelled, and the existing array allocation,
if any, is released.

Flush array configuration from cache
32 25 21 16 11 5

; 0
0100111‘0000‘ rt 0000001 000000000

gacinv 1t

Flushes the configuration or array allocation at the address given by rt from the configuration
cache.

Figure 38(g): Instructions for loading and managing array configurations.

37

Allocate array space
32 25 21 16 11

5 0
0100111‘0000‘ rt 00000/11001000000

gaalloc rt

Allocates space within the array for a configuration, without actually loading a configuration.
Register rt gives the address of a word in memory specifying the number of rows to allocate.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. Any array reads still in progress are then cancelled, and the existing array allocation,
if any, is released. The new allocation is put into effect, with all array rows inactive. The Z
and D registers in all of the newly allocated space are zeroed.

The memory location pointed to by 7t must not change until a flush configuration instruction
(gacinv) is executed for this address.

Load array configuration overlay
32 25 21 16 11 0

5
‘0100111‘0000‘ rt rd 11010 0]clock count

gaconfo rt,rd,count
gaconfo rt,rd

Loads a configuration from memory into the previously allocated array space, while preserving
array data state. Register rt gives the starting address of the configuration in memory, and
register rd gives the first allocated row at which to load the overlaying configuration.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero. The specified configuration is then loaded and made active, after which the array clock
counter is set to the 5-bit unsigned integer constant encoded in the instruction.

The configuration being loaded cannot extend outside the current allocated array space.
Although the existing array allocation remains in effect in its entirity, only the rows of the
overlaying configuration are made active. The contents of the Z and D registers within the
allocated array space are unaffected by this operation.

The copy of the configuration in memory must not change until a flush configuration in-
struction (gacinv) is executed for this address.

Figure 38(h): Instructions supporting configuration overlays.

38

Load array queue control
32 25 21 16 11

; 5 0
0100111\0000\ rt rd 101000/00000

galqc rt,rd

Loads the control registers for the queue specified by register rd with the 20 bytes at the
address given by register rt. The value of register rd must be an integer in the range of 0 to 2
inclusive, indicating one of the three array memory queues. Details about the memory queues
and the queue control registers can be found in Section 3.3 and Figure 51.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero before the load is performed.

Store array queue control
32 25 21 16 11

5 0
0100111\0000\ rt rd 10100100000

gasqc rt,rd

Stores the control registers for the queue specified by register rd into 20 bytes starting at the
address given by register rt. The value of register rd must be an integer in the range of 0 to 2
inclusive, indicating one of the three array memory queues.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero before the store is performed.

Figure 38(i): Instructions for loading and storing the control registers of an array memory
queue.

39

Stop array
32 25 21 16 11 5

0
0100111‘0000‘ rt 00000/0000CO00000O0O

gastop 1t
gastop

Zeros the clock counter, halting array execution. Register rt gets the value that the counter
had before being zeroed.

The assembler allows the destination operand to be dropped, in which case rt is set to the
MIPS pseudo-register $0 (zero register).

Copy word from array control register
32 21 16 11 0

01001100010\ rt \ zd 00000000000

cfga rt,zd

Copies the array control register zd to processor register rt. The 5-bit zd field must be one of
the following integers:

0 The version register, which has the format
32 16 8 0

\0 00000000000000O 0\ implementation \ revision

1 The number of bytes that gasave writes to memory. (This is constant for a given imple-
mentation/revision.)

3 The pointer that was the argument to gaalloc or gaconf when the current array allocation
was made.

4 The pointer to the configuration in memory that was the argument to gaconfo or gaconf.

5 The row offset that was the argument to gaconfo, or zero if the active configuration was
loaded by gaconf.

The assembler accepts for zd either the notation $n or $gacrn.

Figure 38(j): Instructions for stopping the array and retrieving array state.

40

Save internal array state
32 25 21 16 11

5 0
0100111‘0000‘ rt 00000/11100100000

gasave 1t

Saves the internal state of the array to memory at the address given by rt. The internal state
includes in particular the status of pending reads from memory. The amount of memory needed
to store the saved state can be discovered by reading the $gacr1 control register using the cfga
instruction.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero before the store is performed.

Restore internal array state
32 25 21 16 11

5 0
0100111‘0000‘ rt 00000/11100000000

garestore rt

Loads the internal state of the array from memory at the address given by rt. This instruction
also stalls long enough to ensure that conbinatorial signals in the array have been allowed to
settle, assuming a maximum path delay of 8 array clock cycles.

If the array clock counter is nonzero, this instruction first waits for the clock counter to fall
to zero before the load is performed.

Figure 38(k): Instructions for saving and restoring internal array state.

41

cfga

bgaf

bgat

gastop

gabump

gacinv

mfgavz

mtgavz

mfgav

mtgav

mfgavy

mtgavy

21

‘01001100010 rt \ 7d 0000000 0\
32 16 0
\0100110100000000‘ offset ‘
32 16 0
\0100110100000001‘ offset ‘
32 25 21 16 11 5 0
‘0100111\0000\ rt \00000\000000\0 0\
32 25 21 16 11 5 0
\0100111\0000\00000\ rd \000010\0 0\
32 25 21 16 11 5 0
‘0100111\0000\ vt \00000\010000\0 0\
32 25 21 16 11 5 0
‘0100111\0000\ rt \ rd \100000\0 0\
32 25 21 16 11 5 0
\0100111\0000\ rt \ rd \100001\0 0\
32 25 21 16 11 5 0
\0100111\0000\ rt \ rd \100010\0 0\
32 25 21 16 11 5 0
\0100111\0000\ rt \ rd \100011\0 0\
32 25 21 16 11 5 0
‘0100111\0000\ rt \ rd \100100\0 0\
32 25 21 16 11 5 0
\0100111\0000\ rt \ rd \100101\0 0\

Figure 39: List of added instructions in encoding order.

42

galqc

gasqc

gareset

gaalloc

gaconfo

gaconf

garestore

gasave

mfga

mtga

mtga?2

32 25 21 16 11 5 0
\0 00 11\0000\ rt \ rd \101000\00000\
32 25 21 16 11

\0 00 11\0000\ rt \ rd \101001\00000\
32 25 21 16 11 5

‘0 00 11‘0000‘000 0‘00000\110010‘00000‘
32 25 21 16 11 5

\0 00 11\0000\ rt \00000\110010\00000\
32 25 21 16 11 5

\0 0011 1\0000\ rt \ rd \1 10100‘clockcount‘
32 25 21 16 11

\0 00 11\0000\ rt \00000\110110\00000\
32 25 21 16 11 5 0
\0 00 11\0000\ vt \00000\111000\00000\
32 25 21 16 11

\0 00 11\0000\ rt \00000\111001\00000\
32 25 21 16 6 5

‘0 00 1 1‘1 00 0‘ rt ‘ row number ‘R‘clock count‘
32 25 21 16 6 5

‘0 00 1 1‘1 00 1‘ rt ‘ row number ‘R‘clock count‘
32 25 21 16 11

@ 00 11h010‘ rt ‘ rd nM&m@‘m&mmw

Figure 39 continued.

43

3.2 Array control blocks

The control blocks at the left end of each row
help interface between the array on the one
hand and the processor and memory on the
other. The functions a control block can per-
form include:

e zero the clock counter (thus halting array

execution);
interrupt the processor;

set the array condition flag (recall Sec-
tion 3.1.3);

latch a value being transfered by the
mtga2 instruction into the Z or D reg-
isters of the row (Section 3.1.2);

initiate a memory access at an arbitrary
address;

initiate a read or write through an array
memory queue.

As always, the active configuration determines
which if any of these functions each control
block might perform. Figure 40 shows the gen-
eral encoding of the configuration for a control
block. Like a logic block, a control block’s con-
figuration is 64 bits, with four 2-bit inputs,
A, B, C, and D, taken from adjacent wires.
These inputs are used to control some subset
of the functions listed above, according to the
mode in which the control block is configured.

Regardless of mode, the 8 bits of input are
always reduced down to three control signals
as illustrated in Figures 41 and 42. First, each
individual 2-bit input is reduced to a single
bit, either by discarding one of the bits or by
logically or-ing the two bits (Figure 42). The
resulting A’ signal is then used to gate each
of the corresponding B’, C', and D’ signals
to construct the three control signals. The

44

three control signals are thus generated di-
rectly from the B, C, and D inputs, except
that A acts as an enable for all three signals.

Any of the four inputs can be fixed to bi-
nary constant 00 or 10, the same as for a
logic block. Otherwise, a control block in-
put can only come from a local horizontal wire
(H wire), either from above or below the con-
trol block. Control blocks have no outputs, so
there are no vertical wires associated with the
column of control blocks. Aside from the fewer
options, the encoding of control block inputs
is identical to that for logic blocks (Figure 11).

For timing purposes, inputs that are not
constant must come directly from a logic block
register across the connecting H wire to the
control block (Figure 43). A logic block reg-
ister that supplies an input to a control block
in this way is known as the upstream register
for that control input.

3.2.1 Processor interface blocks

In processor interface mode, a control block
can perform various functions connected with
the main processor. The format of a processor
interface configuration is given by Figure 44.
The simplest functions involve the three con-
trol signals, which can manipulate the array
condition flag value, zero the clock counter,
and cause the main processor to take an inter-
rupt. Processor interface mode also provides
the means by which the control block’s row can
latch one of the two words copied from the pro-
cessor register file by the mtga2 instruction.
The B’ input to the control block can be
used to determine the value of the array con-
dition flag. If A’ and B’ are both 1, the condi-
tion flag is set (true); otherwise, the value of
the condition flag depends on the other control
blocks configured in processor interface mode.
If the array condition flag is not set by any
control block, the flag is clear (false). The
condition flag is not sticky, so it can transition

64 58 56 50 48 42 40 34 32
| A | Bin [B Cin |C Din D/
32 5 3 0
‘ mode-specific fields ‘Hdir‘ mode ‘
[63..58] A in

000000 A =00 (binary)
000001 A =10 (binary)
100010 A = leftmost H wire pair above

101010 A = rightmost H wire pair above
110010 A = leftmost H wire pair below

111010 A = rightmost H wire pair below

[57..56] A’
00 A= A
10 A=A,V A
11 A=A
[4..3] Hdir
00 H wires driven from right end (shift left)
01 H wires driven from center
10 H wires driven from left end (shift right)
[2..0] mode
000 no function
010 processor interface
110 memory interface

Figure 40: Control block configuration encoding.

45

any adjacent any adjacent any adjacent

H wire pair H wire pair H wire pair H wire pair
2 2 2 2
10 00 1|;) 00 1|;) 00 10
AF2 B T2 c ¥z D F2
reduce reduce reduce reduce
A’ k B’ C’ D’

three mode-specific control signals

Figure 41: Control block signals.

from clear to set to clear again as determined
each clock cycle by the corresponding control
signals.

The C' input allows the array to zero the
clock counter, and the D’ input makes it pos-
sible for the array to interrupt the processor.
If the A’ and C' inputs are both 1, the ar-
ray clock counter is zeroed at the end of the
current array clock cycle, thus halting array
execution. If A’ and D' are both 1, the main
processor is forced to take an interrupt. Note
that array execution is not directly affected by
any processor interrupts.

Independent of these three control func-
tions, other configuration fields control the
latching of words copied from the processor
with the mtga?2 instruction (Section 3.1.2). Re-
call that the mtga2 instruction makes its two
operands visible on two of the memory buses
running through the array. If the match code
specified in the control block’s configuration
matches that in the mtga2 instruction, one

any adjacent

46

Ao

A

Figure 42: The reduction functions.

logic block

register

H wire

b

control block

clock
cycle:
T-1 — Signal latched in upstream register
T — Signal observed in control block

Figure 43: Valid connection to a control block.
A control block input must come directly over
a local horizontal wire from a logic block reg-
ister in the same row or the row above.

64 58 56 50 48 42 40 34 32
‘ A in ‘A’ Bin ‘B’ Cin ‘C’ D in ‘D’
32 22 16 14 13 10 8 5 3 0
\0 00000000 0\ match code ‘sizerR‘O 0 O‘bus‘ﬂ 0 O‘Hdir‘o 10

A" — enable

B' — condition flag

C'" — zero clock counter
D' — interrupt processor

[15..14] size,

00 8 bits

01 16 bits

10 32 bits

[13] R
0 load Z registers
1 load D registers
[9..8] bus

00 mtga2 rt operand
10 mtga2 rd operand

Figure 44: Configuration for a control block in processor interface mode.

64 58 56 50 48 42 40 34 32
‘ A in ‘A’ B in ‘B’ Cin ‘C’ D in ‘D’
32 30 27 24 22 21 18 16 14 13 10 8 5 3 0

N‘O 0 0\ K ‘sizerR‘O 0 O‘bus‘O 0 O\Hdir\l 1 0\

‘type‘O 0 0‘ delay ‘sizea

Figure 45: Configuration for a control block in memory interface mode. Details about the
various fields are covered in Figures 47, 48, and 52.

47

of these two words will be latched into reg-
isters along the control block’s row. Three
fields of the configuration (Figure 44) deter-
mine: (1) which word is latched (the 7t or rd
operand to mtga2), (2) which registers will be
loaded (Z or D), and (3) the number of bits
to load (8, 16, or 32). If 32 bits are to be
loaded, the chosen value will be latched into
the Z or D registers in columns 4 through 19
of the row. If only 16 bits are to be loaded,
only columns 4 through 11 are affected, and
the registers in columns 12 through 19 are left
untouched. Likewise, if only 8 bits are to be
loaded, only registers in columns 4 through 7
are affected by the operation.

The mtga2 instruction can only execute
when the array is halted, so the instruction
cannot interfere with operation of the array.
Unlike the other instructions for transfering
data to the array, any number of rows can load
either of the two values copied by mtga2.

3.2.2 Memory interface blocks

Memory accesses can be initiated from the re-
configurable array without direct processor in-
tervention. A memory access proceeds in two
steps: the initiate step starts the access by
providing a memory address, and the transfer
step transfers the data (Figure 46). The ad-
dress is read from the Z registers of a selected
row, over a special address bus that runs par-
allel to the four memory buses already men-
tioned. Up to four contiguous words can be
read or written in one memory access, where
the word size is selectable as either 8, 16, or 32
bits. Each word is transferred over a separate
memory bus.

For memory writes, the initiate and trans-
fer steps must occur together in the same clock
cycle. For reads, the initiate step necessarily
precedes the transfer step. Only one demand
access to memory can be initiated in each ar-
ray clock cycle, although multiple memory ac-

48

cesses may be in different stages of progress at
any one time.

The array sees the same memory hierar-
chy as the main processor, including all data
caches. Misses in the first level data cache
may cause array execution to be stalled while
the data is fetched from external memory. To
reduce cache misses, the array can perform
prefetching accesses that merely load the data
cache. Array memory accesses may also gen-
erate page fault traps as discussed later.

In memory interface mode, a control block
has the ability either to initiate a memory ac-
cess or to participate in the transfer of data, or
both. Figure 45 shows the format of the mem-
ory interface configuration. Because the initi-
ate and transfer phases are controlled indepen-
dently, the configuration fields associated with
the initiate step will be presented first, sepa-
rately from those concerned with the transfer
step.

Figure 47 highlights the parts of a memory
interface configuration that control the initia-
tion of memory accesses. The actual instiga-
tion of a memory access is controlled by the
B' signal, while the direction of access (read
versus write) is determined by D’. A demand
access to memory is initiated whenever A’ and
B’ are both 1. If D' is 0 at that time, the ac-
cess will be a read; otherwise it will be either
a write or a prefetch, depending on the con-
figuration. When a control block initiates a
demand memory access, the contents of the
7 registers in the logic blocks in columns 4
through 19 of the same row are sent over the
address bus to provide a 32-bit address for the
memory system.

Other configuration fields control various
apects of the memory access. The size, and
K fields choose the word size and number of
words to access, respectively. The largest pos-
sible access is to four contiguous 32-bit words,
while the smallest is to a single 8-bit “word.”
The word size and the number of words must

Initiate step: Address is Trans

read over address bus.

T

fer step: Up to four words are

transferred over memory buses.

Z registers

Z or D registers

Z or D registers

Z or D registers

Z or D registers

Figure 46: The two steps of a memory access initiated by the array.

each be a power of two within these ranges.

If an access is not a read (that is, if D' = 1),
it is either a write or a prefetch. The type
field of the configuration (Figure 47) deter-
mines whether a non-read memory access is a
write or a prefetch, and also whether a cache
miss should cause data to be brought into the
cache. Since prefetches are performed solely
for the purpose of bringing data into the cache,
it makes no sense not to do cache allocation
on misses in this case. Normal reads and
writes may be configured for cache allocation
on misses or not.

When the access word size is larger than a
byte, the given address may not be aligned on
a natural word-size boundary. The configura-
tion chooses one of two possibilities: either the
least significant bits of the address are ignored,
or a nonaligned memory access is performed at
the specified address. The number of bits ig-
nored is dependent on the word size: 1 bit if
the word size is 16 bits, and 2 bits if the word
size is 32 bits.

Finally, the delay field in the configuration
determines the perceived delay for read ac-
cesses. This field is ignored for writes and

49

prefetches. The timing details of memory ac-
cesses are covered later in this section.

Although any number of control blocks can
be configured as memory interfaces, only one
control block can initiate a memory access dur-
ing any array clock cycle.

The transfer step performs the actual move-
ment of data, either simultaneously with the
initiate step in the case of writes, or after
the data has been read from memory. Fig-
ure 48 shows the memory interface configura-
tion fields associated with the transfer step.
The transfer of data into or out of the array
on a memory access is similar to the latching
of data transferred from the processor by the
mtga?2 instruction (Section 3.2.1). Instead of a
match code, the C’ input to the control block
decides, for each clock cycle, whether a trans-
fer into or out of the row occurs on that cycle.
The D' signal indicates the direction of trans-
fer, the same as it does for the initiate step.

Each word of the as many as four words
transferred has a memory bus dedicated to it
during the transfer. The first word at the given
memory address is copied over bus 0; and if
the access involves more than one word, sub-

64 58 56 50 48 40 34 32

‘ A in ‘A’ Bin ‘B’ D in ‘D’
32 30 27 24 22 21 18 16 3 0
‘type‘(] 0 O‘delay ‘sizeaN‘O 0 0\ K \ ‘1 1 0‘

A" — enable
B' — initiate memory access
D' — 0 =read, 1 = write or prefetch

[31..30] type
01 demand access, read/prefetch, cache allocate
10 demand access, read/write, cache allocate
11 demand access, read/write, no cache allocate
[26..24] delay
000 1 cycle
111 8 cycles
[23..22] size,
00 8 bits
01 16 bits
10 32 bits
[21] N
0 aligned address (ignore bottom bits)
1 possibly nonaligned address
[17..16] K
00 demand access 1 word
01 demand access 2 words
10 demand access 4 words

Figure 47: Memory interface configuration fields associated with the initiate step of a demand
memory access.

50

64 58 56 48 42 40 34 32
| A | | ¢ |C Din [D/
32 16 1413 10 8 3 0
| [size:[R[0 0 0]bus]| 11 0]
A" — enable
C' — load/store registers over bus

D' — 0=load, 1= store

[15..14] size,
00 8 bits
01 16 bits
10 32 bits
[13] R
0 load/store Z registers
1 load/store D registers
[9..8] bus
00 bus 0
01 bus 1
10 bus 2
11 bus 3
Figure 48: Memory interface configuration fields
access.
clock
cycle:
T-1 — (Control signals are in upstream registers)
T — Initiate write to memory

(Address is in Z registers of row)
AND

Store registers over memory buses

(Data is in Z or D registers of rows)

Figure 49: Timing of a memory write exe-
cuted by the array. The write “occurs” in
the active cycle following the control signals
being applied (see text).

o1

associated with the transfer step of a memory

clock
cycle:
T-1 — (Initiate signal is in upstream register)
T Initiate read from memory
(Address is in Z registers of row)
ncycles of delay (1 =n=<38)
T+n-1 (Load signals are in upstream registers)
T+n Load registers over memory buses

(Causes data to be latched into Z or D
registers of rows)

Figure 50: Timing of a memory read exe-
cuted by the array.

sequent words are copied over buses 1, 2, and
3, in that order. For example, a memory access
of two words involves buses 0 and 1: bus 0 for
the word at the given address in memory, and
bus 1 for the next contiguous word in memory.

Following the initiation of a memory read
of n words, and after a specific number of ar-
ray clock cycles have elapsed (discussed be-
low), buses 0 through n — 1 will contain the
values read from memory. At that time, the
control blocks on the rows into which these val-
ues should be latched must signal the transfer
step.

For writes, the initiate and transfer steps are
signalled simultaneously. Exactly one word
must be driven onto each of the n buses. Fig-
ure 49 shows the timing for a write.

Conceptually, the write occurs in the clock
cycle following the control signals being ap-
plied. If the clock counter is also zeroed in
clock cycle T, the write will not occur until the
clock counter is subsequently given a nonzero
value, continuing execution of the same config-
uration. If the current configuration is never
resumed, the write will never actually occur,
despite having been initiated.

Figure 50 shows the timing for a read. For
reads, the delay field of the memory inter-
face configuration specifies the number of ar-
ray clock cycles by which the data will be de-
layed. If this is at least as great as the ac-
tual latency of a read operation, execution of
the array will not be stalled waiting for the
read to return. Otherwise, an implementation
must stall the array sufficiently to give the ap-
pearence that the data was returned in the
specified number of array clock cycles.

52

3.3 Array memory queues

Besides being able to request memory accesses
directly, the array has available to it three
memory queues that can increase the perfor-
mance of sequential accesses. The array reads
or writes to/from a queue much as it does di-
rectly to/from memory, except that it does not
supply an address or other information about
the access. A memory queue is programmed
by the main processor with this information
in advance, using the galqc instruction. Fig-
ure 51 shows the format of the 20 bytes of con-
trol information that are loaded from memory
into a memory queue’s controller by the galqc
instruction. A corresponding gasqc instruc-
tion writes back this information to memory in
the same format to facilitate context switches.

Like demand memory accesses, a memory
queue can be programmed to transfer up to
four words on each request. Unlike a demand
access, the four words can be matched to buses
arbitrarily, so that the first word is not neces-
sarily transferred over bus 0, etc. The last four
bytes loaded into the queue controller assign a
bus to each word (Figure 51).

The configuration of a control block that al-
lows it to initiate a queue access is a variation
of the one for demand memory accesses, as
seen in Figure 52. As before, an access is initi-
ated whenever A’ and B’ are hoth 1. The only
additional information encoded in the config-
uration is the queue number to access. The
direction of transfer (read or write) is deter-
mined by the queue itself and is not decided
by the D input to the control block as it is
for demand accesses. The address bus is not
used for queue accesses. The transfer step of a
queue access is identical to that for a demand
access, keeping in mind that the association
between buses and words is not fixed but is
set by the queue controller.

Ultimately, a queue access has the same af-
fect as a demand memory access at the ad-

32

25 24

17 16

9 8 0

\ooooooo\E\ooooooo\D\ooooooo\A\ooooo000\

32

26 24

18 16

‘OOOOOO‘Size‘OOOOOO‘K

\0000000000000000\

32

address

32

‘00000000000000000000000000000000‘

32

26 24

18 16

10 2 0

\0 0000 O‘buSO‘O 0000 O‘bus]‘O 0000 O‘buSg‘U 00000 ‘bUS3‘

E

0 queue disabled

1 queue enabled

D

0 read

1 write

A

0 no cache allocate
1 cache allocate

size

00
01
10

K

8 hits
16 bits
32 bits

00
01
10

bus,,

1 word per access
2 words per access
4 words per access

00
01
10
11

word n on bus 0
word n on bus 1
word n on bus 2
word n on bus 3

Figure 51: Format of a queue control record.

53

64 58 56 50

48 32

‘ A in ‘ A’ B in

E

32 30 18

16 3 0

[typeJo 0000 0000000]Q |

‘110\

A" — enable
B' — initiate queue access
[31..30] type
00 queue access
[17..16] Q
00 queue 0
01 queue 1
10 queue 2

Figure 52: Memory interface configuration fields associated with the initiate step of a memory

queue access. (Compare with Figure 47.)

clock
cycle:
T-1 — (Control signals are in upstream registers)
T — Initiate write to memory queue
AND

Store registers over memory buses
(Data is in Z or D registers of rows)

Figure 53: Timing of a write to an array
memory queue. The write “occurs” in the
active cycle following the control signals be-
ing applied (see text).

clock
cycle:
T-1 — (Initiate signal is in upstream register)
T — Initiate read from memory queue
(Load signals are in upstream registers)
T+1 — Load registers over memory buses

(Causes data to be latched into Z or D
registers of rows)

Figure 54: Timing of a read from an ar-
ray memory queue. This is equivalent to a
demand memory read with a fixed delay of
1 clock cycle.

54

dress stored within the queue controller (re-
call Figure 51). After each access to a mem-
ory queue, the stored address is incremented to
the next contiguous byte following the last one
read or written. A gasqc instruction writes
out a queue control record with this updated
address, so that galqc can properly restore the
state that the queue had at the time gasqc was
executed.

Figures 53 and 54 show the timing of a
queue write and a queue read, respectively.
The timing for a queue write is indistinguish-
able from that of a demand memory write,
while a queue read appears the same as a de-
mand read with the delay fixed at 1 clock cy-
cle. Like a demand memory write, a queue
write is not committed until one array clock
cycle following the initiation of the write by
the control block. If the clock counter becomes
zero in the same cycle that the queue write
is initiated and if array execution is never re-
sumed, the write will not occur.

Each of the three queues can be accessed on
every array clock cycle, simultaneously with
the initiation of a new demand memory access
every cycle. This makes it possible to achieve
four independent memory accesses per clock
cycle to/from the array. However, each mem-
ory bus can transfer only one word during any
given cycle, so in total a maximum of four 32-
bit words can be accessed each cycle.

95

