A Dynamic Instruction Set Computer

*

Michael J. Wirthlin and Brad L. Hutchings
Dept. of Electrical and Computer Eng.
Brigham Young University
Provo, UT 84602

Abstract

A Dynamic Instruction Set Computer (DISC) has
been developed that supports demand-driven modifi-
cation of its instruction set. Implemented with par-
tially reconfigurable FPGAs, DISC treats instructions
as removable modules paged in and out through par-
tial reconfiguration as demanded by the executing pro-
gram. Instructions occupy FPGA resources only when
needed and FPGA resources can be reused to imple-
ment an arbitrary number of performance-enhancing
application-specific instructions. DISC further en-
hances the functional density of FPGAs by physi-
cally relocating instruction modules to available FPGA
space.

1 Introduction

Developing customized stored-program processors
is a convenient design technique that combines the
enhanced performance of application-specific circuits
with the flexibility of general-purpose programmable
processors. Application-specific instruction sets, cus-
tomized 1/O and optimized control can substantially
improve the performance of even the simplest pro-
grammable processors. FPGAs provide an excellent
implementation platform for application specific pro-
cessors because of the quick development time and
simplified design process. In addition, SRAM based
FPGAS provide the ability to reconfigure more than
one distinct application-specific processor on a single
device.

A number of general purpose processors have
been developed to show the feasibility of implement-
ing a processor architecture on an FPGA[5, 7, 17].
Several custom processors have successfully demon-
strated the advantages of adding specialized hard-
ware to general purpose processor cores. Applica-
tion areas for these processors include digital audio
processing[16], systems of linear equations[17], and
statistical physics[12].

One limitation of building customized processors
on FPGAs is the lack of hardware resources avail-
able for specialized instruction sets. A few hardware-
intensive instruction modules can quickly consume all
the resources of even the largest FPGAs available to-
day. Reconfiguring an FPGA to replace idle circuitry

*This work was supported by ARPA/CSTO under contract
number DABT63-94-C-0085 under a subcontract to National
Semiconductor

during application execution can provide more hard-
ware resources than is available on a one-time config-
ured FPGA. This technique, known as run-time re-
configuration (RTR), has been shown to increase the
functional density of reconfigurable FPGAs[6]. The
DISC processor uses RTR to ameliorate FPGA hard-
ware limitations and provide an essentially limitless
application-specific instruction set.

Early attempts in modifying a processor instruc-
tion set involved a writable control store and gen-
erating custom micro-code for each application[14].
The PRISM project extended this idea by augmenting
the instruction set of a standard RISC processor with
application-specific instructions on a tightly coupled
FPGA. Hardware images of these instructions are ex-
tracted and compiled from the source code transpar-
ent to the user[2]. The WASMII project discusses a
more dynamic approach that involves swapping hard-
ware compute configurations in and out of the FPGA
resource as demanded by the data-flow token[9].

The DISC processor implements each instruction in
the instruction set as an independent circuit module.
The individual instruction modules are paged onto the
hardware in a demand-driven manner as dictated by
the application program. Hardware limitations are
eliminated by replacing unused instruction modules
with usable instructions at run-time. An application
running on DISC contains source code, indicating in-
struction ordering, and a library of application-specific
instruction circuit modules.

This paper will begin by describing the techniques
used to implement DISC. These include partial recon-
figuration, relocatable hardware, and the linear hard-
ware model. The architecture of the DISC processor
will be presented along with several example custom
instructions. The DISC processing system, including
software and hardware platform, will be described.
The paper will conclude by presenting results from
an algorithm implemented on DISC.

2 Partial FPGA Reconfiguration

DISC takes advantage of partial FPGA configura-
tion to implement dynamic instruction paging. Partial
reconfiguration provides the ability to configure a sub-
section of an FPGA while remaining logic operates
unaffected. Although all SRAM-based FPGAs can be
reconfigured in-circuit, only the CAL[1], Atmel[3], and
National Semiconductor[13] FPGAs support the abil-
ity to partially reconfigure hardware resources.

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 2

Although few partially reconfigurable systems
have actually been implemented, several have been
proposed such as hardware multi-tasking[10], a
multi-phase serial communication algorithm[11], a
data acquisition system[4], and a self-reconfiguring
processor[8]. In addition, caching logic to in-
crease hardware efficiency in standard digital sys-
tems has been proposed using partially reconfigurable
FPGAs][15].

DISC uses partial configuration to implement
custom-instruction caching. Instruction modules are
implemented as partial configurations and individu-
ally configured on DISC as demanded by the applica-
tion program. Before initiating execution of a custom-
instruction, DISC queries the FPGA for the pres-
ence of the custom-instruction configuration. If the
custom-instruction is on the FPGA, execution is initi-
ated. Otherwise, program execution pauses while the
custom-instruction is configured on the FPGA.

As a typical program executes, custom-instructions
are configured onto the FPGA until all available hard-
ware is consumed. When all hardware is used by the
custom-instructions, new custom-instruction modules
may not be configured on the FPGA until enough ex-
isting hardware is removed. By replacing the oldest
custom-instruction modules on the FPGA with newer
modules, the FPGA serves as a cache of the most-
recently used custom-instruction modules.

2.1 Example

The following assembly language source code exem-
plifies the use of partial configuration on DISC:

begin:
;instruction INSTA operates on
;memory location meml
INSTA meml
INSTA mem2
;instruction INSTB operates on
;mem3 and mem?2
INSTB mem3,mem2
; "loopback" label defined
loopback:
INSTC mem3
;instruction CMP compares
;meml with mem3
CMP meml,mem3
;instruction JNE jumps
;to loopback if not equal
JNE loopback

continue:
INSTD mem3
INSTB mem2
INSTE mem3
end:
Once each instruc-

tion in the previous program (INSTA, INSTB, INSTC,
CMP, JNE, INSTD, and INSTE) has been designed as
an independent partial configuration, the source code
representing the program is loaded into DISC and the

processor begins execution. The sequencing of instruc-
tions on a small FPGA may execute and configure as
follows:

Operation Instruction

Configure INSTA Configure INSTA on FPGA
Execute INSTA Execute first INSTA

Execute INSTA Execute second INSTA
Configure INSTB Configure INSTB on FPGA
Execute INSTB Execute first INSTB

Configure INSTC Configure INSTC on FPGA
Execute INSTC Execute first INSTC

Execute CMP Execute CMP (always available)
Execute JNE Execute JNE (always available)

(continue looping to INSTC until JNE fails)

Remove INSTA FPGA full, remove oldest module
Configure INSTD Configure INSTD

Execute INSTD Execute INSTD

Execute INSTB Execute second INSTB

Remove INSTC FPGA full, remove oldest module
Configure INSTE Configure INSTE

Execute INSTE Execute INSTE

In the previous example, it is assumed that the first
five instructions (INSTA, INSTB, INSTC, CMP, and
JNE) consume all available space on a single FPGA.
Partially configuring the FPGA allows two additional
instructions (INSTD and INSTE) to execute on an oth-
erwise full FPGA.

2.2 Advantages

Partial configuration provides a number of advan-
tages for DISC over conventional configuration meth-
ods. First, idle instruction modules can be removed to
make room for other usable modules. The ability to
replace instruction modules in the system at run-time
allows the implementation of an instruction set much
larger than is possible on a single one-time configured
FPGA.

Second, configuration time is substantially reduced.
Although the DISC FPGA could be completely con-
figured every time a new instruction is needed, config-
uration overhead can be dramatically reduced by con-
figuring only the requested instruction. Reducing the
size of hardware to configure significantly reduces the
configuration bit-stream. Configuration bit-stream re-

ductions for DISC instruction modules fall between 61—0

and % of a complete FPGA configuration. With a sig-
nificantly smaller bit-stream, the corresponding con-
figuration time is reduced. In an environment of run-
time configuration, reducing the configuration time
will limit the reconfiguration overhead.

Third, system state can be saved on the FPGA dur-
ing configuration. Conventional configuration tech-
niques prevent the preservation of system state during
configuration by destroying the contents of all flip-
flops. Implementing DISC with conventional configu-
ration methods would require the saving and restor-
ing of system state (program counter, register values,
etc.) every time a configuration occurs. To prevent
the time-consuming process of saving and restoring

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 3

state, DISC implements a global controller that re-
mains on the FPGA at all times.

In summary, partial configuration allows DISC
to implement an essentially infinite instruction set
in hardware with limited configuration and state-
preserving overhead.

3 Relocatable Hardware

The ability to partially con-
figure custom-instruction modules allows DISC to im-
plement an important strategy - relocatable hardware.
Relocatable hardware, implemented only in partially
configurable FPGAs, provides the ability to relocate or
make placement decisions of partial configurations at
run-time. Although not essential for a general purpose
processor, it is used on DISC to substantially improve
run-time hardware utilization.

Sub-modules in traditional digital systems require
a single fixed location in hardware because of strict
global and local physical constraints. Because sub-
modules in traditional systems are not paged in and
out of hardware, a fixed location does not pose any
problems and global optimizations can be made on the
static circuitry to improve hardware utilization. In a
run-time partial reconfigurable system, however, fixed
locations for partial configurations can pose serious
performance problems.

If DISC modules are designed for a single physi-
cal location, instructions in the library will inevitably
overlap each other on the hardware. Two overlap-
ping instructions can newver operate properly on the
FPGA at the same time. If two overlapping instruc-
tions are used frequently together in an application
program, the configuration overhead needed to replace
the instructions quickly becomes the system bottle-
neck. DISC removes these problems by designing each
custom-instruction module for multiple locations on
the FPGA.

The flexibility of multiple locations for DISC
custom-instructions significantly improves run-time
utilization. Instruction modules are initially config-
ured on the FPGA as close as possible to avoid wasted
hardware between modules. Once the hardware space
is full, additional instruction modules are placed in
locations where older unneeded instruction modules
currently lie. Relocatable hardware allows run-time
constraints and conditions to dictate instruction mod-
ule placement for optimal hardware utilization.

Relocatable hardware is implemented by design-
ing custom-instruction modules around a firmly de-
fined global context. A global context provides physi-
cal placement positions and a communication network
necessary for these modules to operate correctly. The
global context partitions the available hardware into
an array of potential placement locations for the relo-
catable instruction modules. The communication net-
work is provided at each placement location to insure
adequate communication between the global controller
and the instruction modules at any location.

In order to design instruction modules that fit
within the global context, all instruction modules
must be physically independent from each other. The
physical layout of any instruction module must have

no affect on the physical layout or placement of any
other module in the library.

4 Linear Hardware Space

DISC implements relocatable hardware in the form
of a linear hardware model. As the name suggests, the
model is based on a linear, one-dimensional hardware
space. The two-dimensional grid of configurable logic
cells are organized as an array of rows: location is
specified by vertical location and module size is spec-
ified by module height (in rows).

The global context for the linear hardware model
consists of a uniform communication network and a
global controller. The communication network is con-
structed by running each global signal vertically across
the die and spreading the global signals across the
width of the die parallel to each other (see Figure 1).

obooOooOooogao

Global Controller 3
g

n

et

. . N
Communication Z
Network =

8

2

£

obooooooodaa

= I/O Disabled

Figure 1: Linear Hardware Space.

The communication network provides access to
global resources for all instruction modules and per-
forms intermodule communication. The global con-
troller specifies the communication protocol, controls
global resources (such as I/O and global state) and
monitors circuit execution. The global controller and
the communication network remain in the same loca-
tion throughout application execution to preserve the
global context.

To gain access of all global signals, sub-modules
within a linear hardware space are designed horizon-
tally, across the width of the FPGA. The modules
lie perpendicular to the global communication signals
for full access of all global signals regardless of their
vertical placement (see Figure 2). Although all sub-
modules must span the entire width of the FPGA, each
module may consume an arbitrary amount of hard-
ware by varying its height.

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 4

Global Signals

R

Width of FPGA

Module placed in any vertical location

Figure 2: Simplified Custom Instruction Module.

Relocatable circuit modules communicate as estab-
lished by the global protocol and thus operate properly
at any wvertical location. In a run-time environment,
these circuit modules can be relocated as needed to
optimize the available hardware space.

5 DISC Architecture

The DISC architecture implements relocatable
hardware with the linear hardware model on a sin-
gle National Semiconductor CLAy31 FPGA coupled
to an external RAM. The CLAy31 provides a 56 x
56 array of fine-grain logic cells allowing 56 complete
rows in the linear hardware space. A complete proces-
sor is made by coupling a global controller to a library
of custom-instruction circuit modules (see Figure 3).

Instruction
0000000000 Module
Library
Processor Memory Add
Subtract
LI s
Global Control AND
CELEE EEEET FEEELT °
Instruction Module A .
Custom Module 1
Sy 3 Custom Module 2
a+b-cNd
Instruction Module B Edge Detection
LULEL PPt Tirrii
O00o0ooO0o0oooo FFT

Figure 3: DISC Linear Hardware Space.

5.1 Global Controller

The global controller provides the circuitry for op-
erating and monitoring global resources such as the ex-
ternal RAM, I/0O, the internal communication network

and global state. The global controller consumes ten
complete rows (approximately 1/6 of the chip) leav-
ing 46 rows available for custom-instruction modules.
The physical layout of the global controller, estimated
at 1007 gates, along with the communication network
is seen in Figure 4.

LS

o

Figure 4: DISC Global Controller Layout.

The architecture of the global controller is seen
in Figure 5 and is comprised of the following sub-
modules:

e Data Register (DR): stores intermediate results,
provides inter-module communication buffering
and assists in complex address generation (8 bits),

e Address Register (AR): provides standard ad-
dressing modes for memory access (16 bits),

e Program Counter (PC): provides the sequencing
capability of the processor (16 bits),

e Status Register (SR): stores internal state of the
processor (4 bits),

e Instruction Register (IR): stores the opcode of
the current instruction (8 bits),

e Global Control Unit (GCU): contains the cir-
cuitry necessary to preserve communication pro-
tocol, sequence through processor states, and in-
terface with I/0.

Global Control

Unit
Memory Address

Memory Control !

| Status

1 Opcode - 1
ﬁ—{ Instruction R. }e%{ Program Counter |
I

Address Register

KIOWS [RUINIXT O,

Memory Data

suonoNISU Woisn) o,

Data Register Feedback Data Register

Data Register Value

Figure 5: DISC Global Controller Architecture.

The global controller provides a consistent com-
munication interface and standard protocol for all
custom-instructions at every vertical location. The
global signals available to the custom-instructions in-
clude the following:

e Data Register Value: accesses contents of Data
Register (8 bits),

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 5

e Data Register Feedback: provides new values for
Data Register (8 bits),

e Memory Address: allows address generation con-
trol by custom-instructions (16 bits),

e Memory Data: allows bi-directional access of
memory data by custom-instructions (8 bits),

e Status Signals: provides control capability for
custom-instructions (4 bits),

e Instruction Register: provides opcode of current
instruction (8 bits).

The global controller is also responsible for sequenc-
ing through the instruction cycles for the custom-
instruction modules. The following instruction cycles
are implemented by the global controller:

e Instruction Fetch (IF),
e Operand Fetch (OF),
e Halt Processor (HP),
e Custom Cycle (CC),
e Instruction Execution (EX).

The IF cycle stores the current program memory
into the instruction register and increments the pro-
gram counter. The OF cycle stores the current pro-
gram byte into the address register and also incre-
ments the program counter. The HP cycle causes all
processor resources to remain idle and is used dur-
ing configuration. The CC cycle is used by complex
custom-instruction modules for adding additional cy-
cles and has no affect on global resources. The EX
cycle loads the value of the data register with the con-
tents of the data register feedback path.

Each instruction in the library operates in one of
two possible instruction cycle sequences: standard
and custom. The standard instruction sequence fol-
lows a simple three-cycle execution: IF, OF, and EX.
Any instruction that completes its computation or
function in a single clock cycle, such as basic arith-
metic and logic operations, will operate with this se-
quence.

The custom-instruction sequence offers additional
cycles for complex custom-instructions. The custom
sequence begins with the following two cycles: IF
followed by OF. The sequence then varies by insert-
ing as many CC cycles as necessary to complete a
complex application-specific operation. The custom-
instruction sequence completes with the EX instruc-
tion cycle. The custom-instruction module has com-
plete control over the number of CC cycles needed for
a particular function. Some instructions add as few as
one cycle, while others require thousands of cycles for
a single operation. Figure 6 displays the two instruc-
tion sequences.

The global control unit contains a number of de-
fault instructions necessary for controlling global re-
sources. These instructions are used for sequencing,
status control, and memory transfer and include the
following;:

e set carry: sets carry bit in status register,
e clear carry: clears carry bit in status register,
e store data register: store data register in memory,

Standard Instruction Sequence

| F [oF[cc| | cc| x|

Custom Instruction Sequence
Figure 6: DISC Instruction Sequences.

e load data register: load data register from mem-

ory,
e conditional jump: jump with carry not set.

Fach of these instructions follow the standard in-
struction sequence of three cycles. These instructions,
coupled with the custom-instruction library designed
for a particular application, provide the complete in-
struction set of the processor. An application can im-
plement an instruction set of any size by paging in-
struction modules in a demand-driven manner from
the instruction library.

5.2 Custom-instruction Modules

Custom-instruction modules vary in size and com-
plexity, but each is designed to fit within the global
context described above. Specifically, each module
contains a decode and a data-path unit. Complex
modules contain additional control structures.

The decode unit assigns a specific op-code to the
custom instruction and is responsible for acknowledg-
ing its presence to the global controller. The decode
unit compares the contents of the IR for a match
against its own opcode during the OF cycle. On a
positive match the module signals the global controller
that the hardware is present and instruction sequenc-
ing continues.

The data-path is responsible for providing the
proper connections to the global communication net-
work and adhering to the established communication
protocol. Instruction modules not executing refrain
from sending any signals on the communication chan-
nel to prevent the corruption of other operating in-
structions. The data-path unit provides a new value
for the data register during the EX stage. Most in-
structions perform their function by modifying the
DR.

Several custom-instruction modules of varying size
have been implemented on DISC. These vary from a
simple single row shifter to a complex edge-detection
module of 34 rows. Table 1 shows the current instruc-
tions available for DISC. The circuit layout for the
Adder/Subtracter module is seen in Figure 7.

6 System Operation

The DISC processor was implemented on a PC-
ISA custom board made exclusively for the study.
The board includes static bus interface circuitry, two
CLAy31 FPGAs, and memory. A configuration con-
troller is implemented on the first FPGA to monitor

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 6

[Module | Rows | Gates |
Shifter 1 50
Comparator 3 155
Add/Subtract 3 153
Addressing Modes 4 447
Masking Operations 5 193
Logical Operators 9 232
Big-Level Operations 9 296
Mean Filter 31 2156
Edge Detector 33 2221

Table 1: Sample Custom Instruction Modules.

Figure 7: DISC Adder/Subtracter Custom Module
Layout.

processor execution and request instructions from the
host. DISC is implemented on the second FPGA and
the application program memory is stored in the adja-
cent memory (see Figure 8). The board operates under
a UNIX-based operating system and is controlled by
a host device driver.

= DISC Configuration
> Processor Controller
Z CLAy 31 CLAy 31
PC
Host Bus Interface
ISA Bus

Figure 8: DISC System.

Performance has not been a main consideration as
DISC was implemented primarily to study dynamic
instruction set modification through partial reconfig-
uration. As a research tool, the processor is 8 bits
and operates at the host bus speed of 7.5 MHz (max-
imum operating speed calculated at 12 MHz). Pro-
cessor widths and operating speeds can be increased
as device densities increase and tool enhancements be-
come available.

A DISC application is initiated by first, loading the
program memory with the target application, and sec-
ond, configuring the DISC FPGA with the global con-
troller. During execution, the processor validates the
presence of each instruction in the hardware. If the in-
struction requested by the application program does
not exist on the hardware, the processor enters a halt-
ing state and requests the instruction module from the
host.

Upon receiving a request for an instruction mod-
ule, the host evaluates the current state of the DISC
FPGA hardware and chooses a physical location for
the requested module. The physical location is chosen
based on available FPGA resources and the existence
of idle instruction modules. If possible, the instruc-
tion module is loaded in an FPGA location not cur-
rently occupied by any other instruction module. If no
empty hardware locations are available, a simple least-
recently-used (LRU) algorithm is used to remove idle
hardware. The host modifies the bit-stream of the
requested hardware module to reflect the placement
changes. The hardware module is then configured on
the DISC platform by sending the new configuration
to the system. Figure 9 provides a simplified flow chart
of DISC instruction execution.

Fetch
Instruction

Remove
oid
Instruction(s)

I

Compute
New
Location

Configure
Instruction PC
Module

T

Execute
Instruction

Figure 9: DISC Instruction Execution.

One drawback of partially configuring the device
during run-time is the overhead caused by continually
reconfiguring instruction modules. The current board
configures the DISC processor by sending the config-
uration bit-stream one bit per bus transfer over the
PC-ISA bus. Operating at a maximum transfer rate
of 1.5 Mb/sec, the PC-host is capable of configuring
one row in 600 us. This represents 4511 processor cy-
cles or 1500 simple instruction executions for each row
configured. By removing the current system board
and bus limitations, configuration speeds improve by
a factor of 64 and operate at the device maximum of
12 MB/sec.

Custom instruction modules should remain resident
in the processor for long periods of time to decrease the
reconfiguration overhead. In addition, custom instruc-
tion modules should provide enough performance im-
provement over a sequence of general purpose ALU in-
structions to justify the cost of reconfiguration at run-

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 7

time. The following application example will demon-
strate this tradeoft.

7 Application Example

A simple image mean filter was developed as both
a sequence of general purpose instructions and as an
application specific hardware module to demonstrate
the performance improvements gained by tailoring the
hardware to the application. Both demonstrations
calculate the mean value of each pixel in an image,
g(x,y), by obtaining an average over a 3x3 neighbor-
hood as follows:

g(m,y)=% > gla+my+n).

m=—1n=-—1

A coefficient of % was used to simplify the design. The

128 x 64 grey scale image in Figure 10 was used as the
test image for both cases.

Figure 10: Original Test Image.

7.1 General Purpose Approach

The general purpose approach required four in-
structions not found in the processor core: add, sub-
tract, shift, and enhanced addressing modes. These
additional modules comprised a total of 8 rows, leav-
ing 38 rows free for other custom instruction modules.

Execution of the algorithm centered in the in-
ner loop calculation of the 3x3 neighborhood mean
value. Calculating each pixel value involved individu-
ally adding each pixel of the neighborhood. Many of
the instructions used for this summing operation in-
volved address calculation and pointer manipulations.
Computation of each pixel finishes with three shifts
for the division by eight.

Complete processing of a pixel required an aver-
age 160 instructions or 560 clock cycles. Processing
the complete image, including overhead, required 4.59
Mclocks or 610 ms (7.5 MHz).

7.2 Application Specific Approach

The application specific approach significantly im-
proves performance of the algorithm by assuming con-
trol of address generation, buffering pixel values, and
pipelining the arithmetic. With 31 rows of hardware,
the extra registers, arithmetic operators and control
logic consume significantly more hardware than the

simple instructions used in the general purpose ap-
proach.

The MEAN instruction module calculates the aver-
age of a 3x3 neighborhood through the use of a sliding
window as seen in Figure 11. Each numbered element
of the sliding window represents a pixel register in the
custom module. Instead of loading the entire window
from memory at each pixel, register values are shifted
to represent a sliding window (see Figure 12). Only
registers 3, 6, and 9 are loaded at each new pixel.

”J‘”rf"\”r’"\”:"f
| I I I I |
S o
ol 23]
——-L - PR R

| 506 =
o o=

| 8 9 |
——-L - —d_-

Figure 11: Sliding Pixel Window.

With the window registers loaded, the custom in-
struction module adds all nine pixel values in parallel
with eight custom adders as seen in Figure 12. The di-
vision by eight is achieved by shifting the results three
bit positions.

Figure 12: Dataflow of MEAN Instruction Module.

The MEAN instruction requires only 7 clock cycles
to evaluate each pixel of the image. The clock cycles
are scheduled as follows:

Load register 3

Load register 6

Load register 9

Wait (add delay to parallel add)
Write results to image memory
Calculate new address

N U W

Shift register window

Reducing the pixel calculation to seven clock cy-
cles and eliminating much of the address calculation
overhead reduces the clock count from 4.59M in the
general purpose case to 57k for an 80 times speedup.
Operating at 7.5 MHz, the image is filtered in 7.6 ms.
Figure 13 displays the image filtered with the MEAN
custom instruction.

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995. 8

Figure 13: Test Image Filtered Through MEAN Cus-
tom Instruction.

7.3 Configuration Overhead

Because the cost of reconfiguring the application-
specific instruction module is so high, configuration
overhead must be considered when comparing the two
approaches. The 31 row MEAN instruction requires
an additional 140 kcycles for configuration, raising the
total cycle count to 197 kcycles. The MEAN configu-
ration overhead represents 71% of the total operating
time. If device configuration speeds are maximized,
this configuration overhead is reduced to 16% of the
total operating time.

The extra four modules needed for the general pur-
pose approach require only 36 kcycles for configura-
tion. This represents less than 1% of the total operat-
ing time. When considering the high-cost of configura-
tion in total operating time, the MEAN filter custom
instruction provides a 23 times speedup to the general
purpose approach (see Table 2).

General | Application

Purpose Specific
Rows 8 31
Operation Cycles 4.59M 57k
Raw Speedup 1 80
AreaxTime 36.7TM 1.8M
Configuration Cycles 36k 140k
Total Cycles 4.63M 197k
Actual Speedup 1 23.5

Table 2: Performance Comparison between General
Purpose and Application Specific Approaches.

8 Conclusions

The DISC processor successfully demonstrates that
application specific processors with arbitrarily large
instruction sets can be be constructed on partially
reconfigurable FPGAs. The relocatable hardware
model improved run-time utilization of FPGA re-
sources and the linear hardware model provided a con-
venient framework for relocating custom instruction
modules. DISC demonstrates the general concept of
alleviating density constraints of FPGAs by partially
reconfiguring a device at run-time.

Although the techniques of partial configuration,
relocatable hardware, and the linear hardware model
were implemented as a general purpose processor,
they offer similar advantages to other digital archi-
tectures. They may enhance the usefulness of FPGA
co-processors by providing demand-driven computa-
tion. In addition, these techniques may allow FPGA
based computing machines to operate in more dy-
namic environments such as multi-tasking operating
systems. Any digital architecture that could benefit
from demand-driven hardware may find these tech-
niques useful.

References

[1] Algotronix, Edinburgh, UK. CAL102 Prelimi-
nary Data Sheet, 1988.

[2] P. M. Athanas and H. F. Silverman. Processor
reconfiguration through instruction-set metamor-
phosis. Computer, 26(3):11-18, March 1993.

[3] Atmel, San Jose, CA. Configurable Logic: Design
& Application Book, 1993-1994.

[4] R. Camerota and J. Rosenberg. Data acquisition
systems using Cache Logic FPGAs. In Config-
urable Logic: Design € Application Book, pages
7.15-7-18. Atmel, San Jose, CA, 1993-1994.

[5] J. Davidson. FPGA implementation of a recon-
figurable microprocessor. In Proceedings of the
IEEE 1993 Custom Integrated Circuits Confer-
ence, pages 3.2.1-3.2.4, 1993.

[6] J. G. Eldredge and B. L. Hutchings. Density en-
hancement of a neural network using FPGAs and
run-time reconfiguration. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages
180 188, Napa, CA, April 1994.

[7] B.S. Fagin. Quantitative measurements of FPGA
utility in special and general purpose processors.
Journal of VLSI Signal Processing, 6(2):129-137,
August 1993.

[8] P. C. French and R. W. Taylor. A self-
reconfiguring processor. In D. A. Buell and K. L.
Pocek, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages
50 59, Napa, CA, April 1993.

[9] X.P.Lingand H. Amano. WASMII: a data driven
computer on a virtual hardware. In D. A. Buell
and K. L. Pocek, editors, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Ma-
chines, pages 33—42, Napa, CA, April 1993.

[10] P. Lysaght. Dynamically reconfigurable logic
in undergraduate projects. In W. Moore and
W. Luk, editors, FPGAs: Proceedings of the 1991
International workshop on field-programmable
logic and applications, Oxford, England, Septem-
ber 1991. Abingdon EE and CS Books.

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 19-21, 1995.

[11] P. Lysaght and J. Dunlop. Dynamic reconfigura-
tion of FPGAs. In W. Moore and W. Luk, edi-
tors, More FPGAs: Proceedings of the 1993 In-
ternational workshop on field-programmable logic
and applications, pages 82-94, Oxford, England,
September 1993.

[12] S. Monaghan and C. P. Cowen. Reconfigurable
multi-bit processor for DSP applications in statis-
tical physics. In D. A. Buell and K. L. Pocek, ed-
itors, Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pages 103-110,
Napa, CA, April 1993.

[13] National Semiconductor. Configurable Logic Ar-
ray (CLAy) Data Sheet, December 1993.

[14] T. G. Rauscher and A. K. Agrawala. Dy-
namic problem-oriented redefinition of com-
puter architecture via microprogramming. IFEE
Transactions on Computers, C-27(11):1006-1014,
November 1978.

[15] J. Rosenberg. Implementing Cache Logic'™ with
FPGAs. In Configurable Logic: Design € Appli-
cation Book, pages 7.11-7.14. Atmel, San Jose,
CA, 1993-1994.

[16] M. J. Wirthlin, B. L. Hutchings, and K. L. Gilson.
The Nano Processor: A low resource reconfig-
urable processor. In D. A. Buell and K. L. Pocek,
editors, Proceedings of IEEE Workshop on FP-
GAs for Custom Computing Machines, pages 23
30, Napa, CA, April 1994.

[17] A. Wolfe and J. P. Shen. Flexible processors:
a promising application-specific processor design
approach. In Proceedings of the 21st Annual
Workshop on Microprogramming and Microarchi-
tecture - MICRO ’21, pages 30 39, San Diego,
CA, November 1988.

